Raincloud Plots 开源项目教程
1、项目介绍
Raincloud Plots 是一个用于数据可视化的开源项目,旨在提供既美观又具有统计有效性的图表。该项目由 Micah Allen 等人开发,通过结合小提琴图、散点图和箱线图,Raincloud Plots 能够更全面地展示数据的分布和细节。
2、项目快速启动
安装
首先,确保你已经安装了 R 或 Python 环境。然后,通过以下命令安装 Raincloud Plots:
R 环境
# 使用 remotes 包安装
install.packages("remotes")
remotes::install_github('jorvlan/raincloudplots')
Python 环境
# 使用 pip 安装
pip install ptitprince
快速示例
R 环境
library(raincloudplots)
# 准备数据
df_1x1 <- data_1x1(
array_1 = iris$Sepal.Length[1:50],
array_2 = iris$Sepal.Length[51:100],
jit_distance = 0.09,
jit_seed = 321
)
# 绘制 Raincloud Plot
raincloud_1_h <- raincloud_1x1(
data = df_1x1,
colors = c('dodgerblue', 'darkorange'),
fills = c('dodgerblue', 'darkorange'),
size = 1,
alpha = 0.6,
ort = 'h'
) + scale_x_continuous(breaks=c(1, 2), labels=c("Group1", "Group2"), limits=c(0, 3)) +
xlab("Groups") +
ylab("Score")
print(raincloud_1_h)
Python 环境
import ptitprince as pt
import seaborn as sns
import matplotlib.pyplot as plt
# 准备数据
df = sns.load_dataset('iris')
# 绘制 Raincloud Plot
dx = "species"
dy = "sepal_length"
ort = "h"
pal = "Set2"
sigma = 0.2
f, ax = plt.subplots(figsize=(7, 5))
pt.RainCloud(x = dx, y = dy, data = df, palette = pal, bw = sigma, width_viol = 0.6, ax = ax, orient = ort)
plt.show()
3、应用案例和最佳实践
应用案例
Raincloud Plots 在多个领域都有广泛应用,特别是在生物统计学、心理学和数据科学中。例如,在心理学研究中,研究人员可以使用 Raincloud Plots 来展示不同实验条件下的数据分布,从而更直观地比较各组数据。
最佳实践
- 数据准备:确保数据清洗和预处理步骤已经完成,以便生成准确的图表。
- 参数调整:根据数据的特点调整图表的参数,如颜色、透明度和方向,以提高图表的可读性。
- 文档和注释:在生成图表时,添加必要的注释和说明,帮助读者更好地理解图表内容。
4、典型生态项目
Raincloud Plots 作为一个数据可视化工具,与其他数据科学和统计分析工具紧密结合。以下是一些典型的生态项目:
- ggplot2:R 语言中的一个强大的数据可视化包,与 Raincloud Plots 结合使用可以生成更复杂的图表。
- seaborn:Python 中的一个统计数据可视化库,提供了丰富的图表类型和样式,与 Raincloud Plots 结合使用可以增强图表的表现力。
- matplotlib:Python 的一个基础绘图库,提供了底层的绘图功能,与 Raincloud Plots 结合使用可以实现更精细的图表控制。
通过这些生态项目的结合使用,可以进一步扩展 Raincloud Plots 的功能和应用范围。