DiffAttack项目安装与配置指南

DiffAttack项目安装与配置指南

DiffAttack An unrestricted attack based on diffusion models that can achieve both good transferability and imperceptibility. DiffAttack 项目地址: https://gitcode.com/gh_mirrors/di/DiffAttack

1. 项目基础介绍

DiffAttack是一个基于扩散模型的不受限攻击方法,旨在生成既不易被人类视觉感知又具有良好迁移性的对抗样本。该项目是官方实现的DiffAttack方法,主要使用了Python编程语言。

2. 关键技术和框架

  • 扩散模型:DiffAttack利用了扩散模型在生成和判别方面的能力,通过在扩散模型的潜在空间中构建扰动,生成语义相关的对抗样本。
  • Python:项目主要使用Python 3.8进行开发。
  • 深度学习框架:项目依赖于PyTorch等深度学习框架进行模型的训练和测试。

3. 安装和配置准备工作

硬件要求

  • GPU:至少16GB显存的高端NVIDIA GPU。

软件要求

  • Python:3.8版本。
  • CUDA:11.3版本。
  • cuDNN:8.4.1版本。

环境准备

  1. 安装Python 3.8。
  2. 安装CUDA 11.3和对应版本的cuDNN。
  3. 安装Git以便克隆项目代码。

安装步骤

  1. 克隆项目到本地:

    git clone https://github.com/WindVChen/DiffAttack.git
    cd DiffAttack
    
  2. 安装项目所需的Python库:

    pip install -r requirements.txt
    
  3. 准备数据集:

    • 项目中提供了演示数据集,可以直接运行优化代码查看结果。
    • 如果要测试完整的ImageNet-Compatible数据集,需要下载相应的数据集,并在main.py中设置--images_root--label_path
  4. 准备预训练模型:

    • 项目使用Stable Diffusion 2.0作为扩散模型,可以在main.py中设置--pretrained_diffusion_path加载预训练权重。
    • 对于论文中提到的对抗训练模型(Adv-Inc-v3, Inc-v3 ens3, Inc-v3 ens4, IncRes-v2 ens等),可以从指定链接下载预训练权重,并将它们放置在pretrained_models目录下。
  5. 运行示例:

    • 要生成对抗样本,可以运行以下命令:

      python main.py --model_name <surrogate model> --save_dir <save path> --images_root <clean images' path> --label_path <clean images' label.txt>
      

      其中<surrogate model>是支持的替代模型名称,<save path>是保存对抗样本的路径,<clean images' path>是干净图像的路径,<clean images' label.txt>是干净图像的标签文件路径。

    • 如果要在其他数据集上生成对抗样本,可以使用--dataset_name参数指定数据集名称,例如cub_200_2011standford_car

以上步骤即为DiffAttack项目的详细安装和配置指南,按照这些步骤操作,即可成功搭建并运行该项目。

DiffAttack An unrestricted attack based on diffusion models that can achieve both good transferability and imperceptibility. DiffAttack 项目地址: https://gitcode.com/gh_mirrors/di/DiffAttack

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

束辉煊Darian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值