DiffAttack项目安装与配置指南
1. 项目基础介绍
DiffAttack是一个基于扩散模型的不受限攻击方法,旨在生成既不易被人类视觉感知又具有良好迁移性的对抗样本。该项目是官方实现的DiffAttack方法,主要使用了Python编程语言。
2. 关键技术和框架
- 扩散模型:DiffAttack利用了扩散模型在生成和判别方面的能力,通过在扩散模型的潜在空间中构建扰动,生成语义相关的对抗样本。
- Python:项目主要使用Python 3.8进行开发。
- 深度学习框架:项目依赖于PyTorch等深度学习框架进行模型的训练和测试。
3. 安装和配置准备工作
硬件要求
- GPU:至少16GB显存的高端NVIDIA GPU。
软件要求
- Python:3.8版本。
- CUDA:11.3版本。
- cuDNN:8.4.1版本。
环境准备
- 安装Python 3.8。
- 安装CUDA 11.3和对应版本的cuDNN。
- 安装Git以便克隆项目代码。
安装步骤
-
克隆项目到本地:
git clone https://github.com/WindVChen/DiffAttack.git cd DiffAttack
-
安装项目所需的Python库:
pip install -r requirements.txt
-
准备数据集:
- 项目中提供了演示数据集,可以直接运行优化代码查看结果。
- 如果要测试完整的ImageNet-Compatible数据集,需要下载相应的数据集,并在
main.py
中设置--images_root
和--label_path
。
-
准备预训练模型:
- 项目使用Stable Diffusion 2.0作为扩散模型,可以在
main.py
中设置--pretrained_diffusion_path
加载预训练权重。 - 对于论文中提到的对抗训练模型(Adv-Inc-v3, Inc-v3 ens3, Inc-v3 ens4, IncRes-v2 ens等),可以从指定链接下载预训练权重,并将它们放置在
pretrained_models
目录下。
- 项目使用Stable Diffusion 2.0作为扩散模型,可以在
-
运行示例:
-
要生成对抗样本,可以运行以下命令:
python main.py --model_name <surrogate model> --save_dir <save path> --images_root <clean images' path> --label_path <clean images' label.txt>
其中
<surrogate model>
是支持的替代模型名称,<save path>
是保存对抗样本的路径,<clean images' path>
是干净图像的路径,<clean images' label.txt>
是干净图像的标签文件路径。 -
如果要在其他数据集上生成对抗样本,可以使用
--dataset_name
参数指定数据集名称,例如cub_200_2011
或standford_car
。
-
以上步骤即为DiffAttack项目的详细安装和配置指南,按照这些步骤操作,即可成功搭建并运行该项目。