Final2x 图像超分辨率软件使用教程

Final2x 图像超分辨率软件使用教程

Final2x2^x Image Super-Resolution ☢️项目地址:https://gitcode.com/gh_mirrors/fi/Final2x

1. 项目介绍

Final2x 是一款强大的跨平台图像超分辨率工具,它支持多种模型如 RealCUGAN, RealESRGAN 和 Waifu2x,能够提升图像清晰度和细节。该软件允许用户自定义输出尺寸,从小幅增强到大规模超级分辨率,适用于各种需求。此外,Final2x 支持多语言界面,包括英语、中文、日语和法语。

2. 项目快速启动

Windows

下载最新版本并运行:

https://github.com/Tohrusky/Final2x/releases

通过 Winget 安装和升级(可选):

winget install Final2x

MacOS

首先禁用 Gatekeeper:

sudo spctl --master-disable

然后在系统偏好设置中允许从任何来源安装应用程序,运行以下命令解除权限:

xattr -cr /Applications/Final2x.app

Linux

确保Python 3.8+已安装,并运行以下命令:

pip install Final2x-core
Final2x-core -c   # 缓存模型
apt install -y libomp5 xdg-utils

3. 应用案例和最佳实践

  • 对低分辨率的旧照片进行恢复,以获取更清晰的视觉效果。
  • 游戏截图的画质提升,增加游戏内纹理细节。
  • 动漫图像的二次创作,放大原图以便于绘制细节。

最佳实践是先预加载所需模型,这可以通过 Final2x-core -c 命令实现,以减少首次使用时的等待时间。

4. 典型生态项目

Final2x 基于以下几个生态项目构建:

  • Final2x-core:提供了基于ncnn和Vulkan库的核心算法。
  • naive-ui:提供了UI框架,用于创建用户友好的界面。
  • electron-vite:作为构建框架,用于开发跨平台的应用程序。
  • ncnn:是一个高性能的神经网络推理库,优化了图像处理速度。

这些生态项目共同促进了Final2x在计算机视觉、深度学习以及跨平台应用中的优秀性能。

Final2x2^x Image Super-Resolution ☢️项目地址:https://gitcode.com/gh_mirrors/fi/Final2x

以下是一个示例代码,展示如何修改 SRRestNet 网络结构以适用于多组训练对作为训练集的情况: ```python import torch.nn as nn import torch.nn.functional as F class SRRestNet(nn.Module): def __init__(self, num_training_pairs): super(SRRestNet, self).__init__() self.num_training_pairs = num_training_pairs # 定义卷积层和残差块 self.conv1 = nn.Conv2d(3, 64, kernel_size=9, padding=4) self.residual_blocks = nn.Sequential( *[ResidualBlock(64) for _ in range(16)] ) # 定义上采样层 self.conv_transpose = nn.ConvTranspose2d(64, 64, kernel_size=4, stride=2, padding=1) # 定义最终输出层 self.conv_final = nn.Conv2d(64, 3, kernel_size=3, padding=1) # 定义多组训练对的损失函数 self.criterion = nn.MSELoss() def forward(self, *input_imgs): # 将多组低分辨率图像和单张高清图像拼接在一起 input_imgs = torch.cat(input_imgs, dim=0) # 对所有图像进行 SR 网络的前向传播 x = F.relu(self.conv1(input_imgs)) x = self.residual_blocks(x) x = F.relu(self.conv_transpose(x)) x = self.conv_final(x) # 将输出结果拆分为多组 SR 图像和单张高清图像 sr_imgs = torch.split(x, self.num_training_pairs, dim=0) gt_img = sr_imgs[-1] sr_imgs = sr_imgs[:-1] # 返回多组 SR 图像和单张高清图像 return sr_imgs, gt_img def compute_loss(self, sr_imgs, gt_img): # 计算多组 SR 图像和单张高清图像的损失 loss = 0 for sr_img in sr_imgs: loss += self.criterion(sr_img, gt_img) return loss / len(sr_imgs) ``` 在这个示例中,我们在 SRRestNet 的 `__init__` 方法中添加了一个新的参数 `num_training_pairs`,表示每组训练对中包含的低分辨率图像的数量。在 `forward` 方法中,我们接收多个输入图像,并将它们拼接在一起,然后对所有图像进行 SR 网络的前向传播。最后,我们将输出结果拆分为多组 SR 图像和单张高清图像,分别返回它们。 在 `compute_loss` 方法中,我们计算多组 SR 图像和单张高清图像的损失,并返回它们的平均值作为最终损失。 使用这个修改后的 SRRestNet 网络时,你需要将每组训练对中的所有低分辨率图像和单张高清图像一起传递给网络的 `forward` 方法,如下所示: ```python # 创建 SRRestNet 网络 num_training_pairs = 4 sr_rest_net = SRRestNet(num_training_pairs) # 定义优化器 optimizer = torch.optim.Adam(sr_rest_net.parameters(), lr=1e-3) # 循环训练多个 epoch for epoch in range(num_epochs): running_loss = 0.0 for i, data in enumerate(train_dataloader, 0): # 将每组训练对中的所有图像拆分出来 lr_imgs, gt_img = zip(*data) lr_imgs = [img for pair in lr_imgs for img in pair] # 将多组图像拼接在一起 gt_img = gt_img[0] # 只有一张高清图像 # 将图像传递给网络 sr_imgs, _ = sr_rest_net(*lr_imgs, gt_img) # 计算损失并进行反向传播 loss = sr_rest_net.compute_loss(sr_imgs, gt_img) optimizer.zero_grad() loss.backward() optimizer.step() # 统计损失值 running_loss += loss.item() print(f"Epoch {epoch+1} loss: {running_loss / len(train_dataloader)}") ``` 在这个示例中,我们使用了一个 `zip` 函数将每组训练对中的低分辨率图像拆分出来,并将它们拼接在一起,然后将它们和单张高清图像一起传递给网络的 `forward` 方法。在计算损失时,我们使用 SRRestNet 的 `compute_loss` 方法来计算多组 SR 图像和单张高清图像的损失。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张亭齐Crown

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值