ExDark 数据集:低光照图像处理入门指南

ExDark 数据集:低光照图像处理入门指南

项目地址:https://gitcode.com/gh_mirrors/ex/Exclusively-Dark-Image-Dataset

1. 项目介绍

ExDark 数据集是专为在极低光照环境到黄昏条件下进行对象检测和图像增强研究而设计的。它包含了迄今为止最大规模的低光照图像集合,共7,363张图片,涵盖了10种不同的光照条件,以及12个类别的物体标注(类似于PASCAL VOC),包括图像分类级别和局部对象边界框。这个数据集由Loh Yuen Peng 和 Chan Chee Seng 在2019年的《计算机视觉和图像理解》期刊上发布。

2. 项目快速启动

安装依赖项

确保你的系统安装了MATLAB,因为提供的源码是基于MATLAB的。此外,可能还需要其他图像处理或深度学习库,具体取决于你要执行的任务。

下载数据集

首先克隆项目仓库:

git clone https://github.com/cs-chan/Exclusively-Dark-Image-Dataset.git

然后在项目根目录下,你可以找到所有的图像和相应的标注文件。

运行示例代码

该项目提供了低光照图像增强的代码示例。要运行它:

% 打开MATLAB并导航到项目目录
cd Exclusively-Dark-Image-Dataset

% 加载一个示例图像并进行增强
image_path = 'path/to/your/dataset/image.jpg'; % 替换为实际图像路径
enhanced_image = low_light_enhancement(image_path);

% 显示原始图像和增强后的图像
figure, imshowpair.imread(image_path), enhanced_image, 'montage';

请注意,你需要根据实际情况调整low_light_enhancement函数来适应自己的需求。

3. 应用案例和最佳实践

  • 对象检测:利用该数据集训练和验证在低光照条件下的目标检测模型,例如YOLO或SSD。
  • 图像增强:使用提供的代码或自定义方法,对低光照图像进行预处理,提高后续任务的性能。
  • 域适应:在白天和夜晚图像之间进行域适应的研究,以改善模型在不同光照条件下的泛化能力。

最佳实践建议定期评估模型在各种光照条件下的表现,并逐步增加复杂性,如添加遮挡或动态环境。

4. 典型生态项目

  • OpenCV:用于基础的图像处理操作和特征提取。
  • TensorFlowPyTorch:用于构建深度学习模型,特别是在实现对象检测和图像翻译任务时。
  • Domain Adaptation Libraries(如DAVIS):提供工具包支持跨领域适应的实验。

通过结合这些生态系统中的项目,可以更有效地利用ExDark数据集进行深入的低光照视觉研究。记住,对于商业用途,需联系作者Dr. Chee Seng Chan获取授权。


以上就是使用ExDark数据集的基本步骤和应用场景,祝你在低光照图像处理研究中取得成功!如有任何疑问或反馈,欢迎与作者联系。

Exclusively-Dark-Image-Dataset Exclusively Dark (ExDARK) dataset which to the best of our knowledge, is the largest collection of low-light images taken in very low-light environments to twilight (i.e 10 different conditions) to-date with image class and object level annotations. Exclusively-Dark-Image-Dataset 项目地址: https://gitcode.com/gh_mirrors/ex/Exclusively-Dark-Image-Dataset

### 使用ExDark数据集进行模型训练 #### 准备工作 为了成功使用ExDark数据集进行模型训练,首先要完成一系列准备活动。这包括但不限于下载并解压ExDark数据集文件至指定目录下[^2]。 #### 数据预处理 由于原始ExDark数据集并非直接适用于目标检测框架(如YOLOX),因此需要将其转换为目标检测算法所需的格式——通常为VOC或COCO格式。具体来说,在此场景中推荐将ExDark数据集转化为YOLO格式以便于后续与YOLOX兼容的操作。这一过程中涉及创建标签文件夹、编写脚本以读取图片尺寸信息并将边界框坐标按照YOLOv5的要求标准化保存等步骤[^3]。 ```bash # 假设已经安装了必要的库和工具 cd /path/to/exdark/dataset/ python convert_to_yolo.py --output_dir ./labels/ ``` 上述命令假设存在一个名为`convert_to_yolo.py`的Python脚本来执行从原生标注到YOLO格式的转换任务;实际应用时可根据个人需求调整路径参数。 #### 配置环境与依赖项 确保本地开发环境中已正确配置好用于运行YOLOX项目的各项软件包版本及其相互间的协作关系。例如,确认PyTorch及相关CUDA扩展已被适当设置,并能够正常调用GPU资源加速计算过程[^1]。 #### 修改配置文件 针对特定应用场景微调YOLOX默认配置选项至关重要。编辑位于项目根目录下的`.yaml`配置文档,修改其中有关输入分辨率大小、批量数量(batch size)、初始学习率(initial learning rate)等方面设定值使之更加贴合当前实验条件及硬件性能特点。 ```yaml # yolox_s.yaml example snippet depth: 0.33 width: 0.50 random_size: [14, 26] test_size: [640, 640] strides: [8, 16, 32] num_classes: 7 # ExDark has seven categories of objects. max_epoch: 300 lr_decay_epochs: [240, 270] warmup_epochs: 5 no_aug_epochs: 15 basic_lr_per_img: 0.001 / 64.0 print_interval: 10 eval_interval: 10 train_ann: "instances_train.json" val_ann: "instances_val.json" data_num_workers: 4 persistent_workers: True mosaic_prob: 0.5 mixup_prob: 0.5 hsv_prob: 1.0 flip_prob: 0.5 degrees: 10.0 translate: 0.1 scale: (0.1, 2) shear: 2.0 perspective: 0.0, enable_mixup: True special_aug_ratio: 0.8 ``` 请注意以上仅为部分关键字段展示,完整的配置应参照官方说明文档来填充其余必要条目。 #### 开始训练流程 一切就绪之后即可启动正式训练环节。通过终端界面提交如下指令触发YOLOX基于先前整理好的ExDark数据集开展迭代优化直至收敛: ```bash python tools/train.py -f exps/example/yolox_s.py -d 1 -b 16 --fp16 -o -c pretrained/yolox_s.pth ``` 这条语句指示程序采用单卡模式(`-d 1`)加载预先训练过的权重作为起点(`pretrained/yolox_s.pth`),同时开启混合精度浮点运算支持(`--fp16`)加快速度降功耗开销。当然也可以视情况灵活增减batch size(-b 参数),从而平衡内存占用量同吞吐效率之间的矛盾冲突。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

侯彬颖Butterfly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值