自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

sysu AI 18 yasuo

hard hard learning day day up

原创 2-6月以来密集的项目实践的总结

2-4月做了三件事,为MICCAI会议投稿论文准备一些实验,打了个超分辨率比赛NTIRE,得了大概是第7名/200多个参赛队伍,做了一个新冠病毒相关肺部图像诊断的项目;4-6月以来做了三件事情,写了一份(实际上算两份)综述,跑了好几份代码做了个测试报告,还有就是现在仍在进行时的智能车创意赛线上赛,...

2020-05-30 20:36:11 363 0

原创 CornerNet跑自己数据集笔记

原repos地址为:https://github.com/princeton-vl/CornerNet 为了在服务器的cuda10电脑上用自己的数据集跑这份代码,主要有三点: 修改数据集接口 适应cuda10和pytorch1.5 训练配置 接下来就分点详述: 修改数据集接口: 有四个文...

2020-05-22 11:22:39 120 2

原创 SSD pytorch 运行debug

出于某些原因需要在一个数据集上测试SSD 源代码来自github 高star的repos:https://github.com/amdegroot/ssd.pytorch 为了在自己的数据集上进行训练和测试,首先是要按下面这篇blog的流程先修改: https://blog.csdn.net...

2020-05-15 12:55:47 38 0

原创 yolov4官方源码在自己的数据集上运行笔记

地址:https://github.com/lovedoubledan/darknet 源码是c的不是python的,所以配置稍微有点麻烦: 首先要先配好环境,否则编译会出错,就算编译不出错,运行也会出错,环境要求看官方文档(也就是上面这个网站首页展示的那个超长的md文件):由于服务器之前装好了...

2020-05-13 13:13:20 130 0

原创 将NWPU VHR-10数据集转换为coco格式

""" Created on 5/11 读取txt文件,划分训练集和测试集并且生成coco格式的json文件 @author: Wu """ import json import os import numpy as np import ...

2020-05-12 14:43:23 63 0

原创 将NWPU VHR-10 数据集转换为yolo的数据集格式

import os import pandas as pd import cv2 ann_path = 'E:/dataset/NWPU VHR-10/NWPU VHR-10 dataset/ground truth' output_path = 'E:/datase...

2020-05-12 14:41:56 106 0

原创 detectron2 下载预训练模型中断导致无法运行

在使用detectron2的R101的faster-rcnn和retinanet时如果会自动加载预训练的R101 backbone 解决方法有两个,一个是覆盖yaml中model weight的设定,设为空字符串:cfg.MODEL.WEIGHTS = '' 另一个是用vpn把...

2020-05-12 10:38:43 77 0

原创 数电学习笔记(7)——时序逻辑电路

先写驱动方程,即求触发器的输入;再写状态方程,即求触发器的输出;最后求输出方程。 描述时序逻辑电路的逻辑的方法除了这组方程,还可以是状态转换表、状态转换图、状态机流程图(SM图/ASM图)和时序图 状态转换表:任意一组取值作为初态,得到次态,以次态作为新的初态,一直下去,以真值表的形式给出: 状态...

2020-05-08 14:15:09 57 0

原创 数电学习笔记(6)——锁存器和触发器

SR锁存器 其中(a)和(b)是等效的。 同步SR触发器,也称电平触发SR触发器: 如果把上述触发器的输入端加上一个反相器改为单端输入则构成了D触发器: D触发器也可以利用CMOS传输门来实现: 这类电平触发器特点是时钟信号高电平持续时期输出随输入同步变化,低电平时保持下降沿时刻...

2020-05-07 23:08:19 38 0

原创 数电学习笔记(5)——三极管和TTL门电路

三极管的输入特性曲线,用虚线来近似,VONV_{ON}VON​为0.5-0.7V(硅管)或0.2-0.3V(锗管) 输出特性曲线: 明显分为3个区——放大区、截止区、饱和区: 放大区电流不受vCEv_{CE}vCE​影响,而与iBi_BiB​成正比 截止区电流为0,相当于断开 vCEv_{C...

2020-05-06 23:04:56 43 0

原创 数电学习笔记(4)——CMOS电路

为了减小CMOS反相器的传输延时(因为有寄生电容导致输出变化和输入变化之间有延时),需要减小电容和内阻,相应的需要通过提高电源电压和输入信号的高电平来实现 交流噪声的持续时间越小,容限越高;电源电压越高,容限越高; 在的输出电平从一个状态变到另一个状态的时候会产生动态功耗,由两部分组...

2020-05-06 21:47:11 68 0

原创 数电学习笔记(3)——MOS管

mos管 mos管由几部分构成——P型衬底B;在P型衬底上制作的两个N型区,这个两个N型区通过导线引出到SiO2绝缘层的表面形成两个电极——源极S和漏极D;衬底上的二氧化硅绝缘层;二氧化硅绝缘层上的栅极G;通常源极电极还有一根导线和衬底连接使得衬底和源极之间电压差为0或是直接将衬底接系统的最低...

2020-05-06 15:20:00 33 0

原创 NLP学习笔记(9)

目前深度学习的NLP存在一些局限性,比如通过自监督学习学得一个很好的模型真正理解语言的奥义(需要大量的标注信息) 第一个难题就是没有一个模型可以在所有的任务上取得好效果,之前提到的dynamic memory network就是为了来解决 这个问题的 第二个难题是没有办法共享多任务之间的参数,...

2020-04-17 11:29:55 36 0

原创 NLP学习笔记(7)

QA系统 希望一个QA系统能同时完成:回答问题、语义分析、词性标注三个任务有两个难点,一个是在这三个任务上各自表现效果好的模型不同,也就是说没有一个模型能同时很好地完成者三个任务;第二个是,在NLP中并没有发现在一个任务中训练得到的权重能够适用于另一个领域,唯一能共享成功的也只有词向量。 我们用...

2020-04-17 08:19:21 22 0

原创 NLP学习笔记(8)

这节课的内容看得太快而且有点难,所以这里只是做一下记录,并不详细,作为一个内容的索引,事后需要自己取搜论文了解细节 这是一个想改进tree LSTM的模型 有人用基于字符的模型,也有人用基于单词的模型,还有人用两者混合模型。基于字符的模型总的来说效果没有基于单词好而且比较慢。基于字符的模型有很...

2020-04-16 17:11:35 36 0

原创 NLP学习笔记(6)

我们希望把多个单词组成的短语同样在词向量的空间中找到对应的向量,当然你也可以在不同的空间中,但是如果在同一空间中是有好处的 ,我可以利用该空间捕捉到短语与单词之间意思的相似度,比如the man on the snowboard 和 snowboarder。但是你不可能为每一个短语定义一个向量,即...

2020-04-12 19:52:57 21 0

原创 NLP学习笔记(5)

传统的语音识别模型需要建立一个generative模型,从语言模型中产生单词序列,然后产生tokens(音标)序列,然后产生语音序列(时域或频域的声音序列),然后是计算得到一些特征(信号处理专家给出计算方法),这样当语音序列进来的时候,就会被换算成同样的特征,然后逆流而上搜索对应的Y 如果把上述...

2020-04-10 11:30:56 48 0

原创 NLP学习笔记(4)

不要在RNN的水平方向使用dropout(虽然有人这么做,但是是用特殊的方法的),但是经常在垂直方向使用dropout 初始化参数的时候,LSTM的forget gate的bias给1或2确保不会一开始就遗忘,然后其它的参数要初始化为很小的值,否则网络就会训练不起来,初始化很重要。初始化为正交矩阵...

2020-04-08 17:03:16 32 0

原创 NLP学习笔记(3)

NMT(nerual machine translation)任务经常被描述为一个encode-decode过程,输入序列利用RNN进行encode产生一个编码(包含句子的语义信息),将这个编码送进decode的RNN产生target的语言序列,这就完成了端到端的MT。decode的RNN的输入,...

2020-04-08 09:10:27 28 0

原创 FPN阅读笔记

Feature Pyramid Networks for Object Detection arxiv链接:https://arxiv.org/pdf/1612.03144v2.pdf 网络结构示意图 核心思想是,高级语义信息在靠后的feature map,但是分辨率太小,导致小物体的特征几乎...

2020-04-07 13:14:23 36 0

原创 NLP学习笔记(2)

如果你的数据集比较小,最好不要自己训练词向量,容易过拟合,直接download别人在某些语料库上训练好的词向量fix下来比较好 但是如果你的数据集比较大,你可以随机初始化你的词向量并且在训练过程中训练他们 window classification是最简单的NLP问题之一,你只是把语料库中用一个w...

2020-04-04 22:16:01 29 0

原创 SSD论文阅读笔记

SSD: Single Shot MultiBox Detector 论文arxiv链接:https://arxiv.org/pdf/1605.06409v2.pdf 亮点在于对多个size的featuremap产生各自scale的bbox: scale采取的是0-1的归一化scale,假设一...

2020-04-04 18:43:13 23 0

原创 python 打印表格(如深度学习想打印混淆矩阵)

来源:prettytable confusion_matrix = [[0 for j in range(4)] for i in range(4)] for i, j in zip(new_predicted, new_targets): confusion_matri...

2020-04-01 18:58:02 149 0

原创 嵌入式系统学习笔记(8)——定时器计数器

定时器计数器的操作是通过对SFR的赋值实现的,定时器计数器的结果是通过对SFR的读取得到的。 注意T0和T1并不是16位寄存器而是4个8位寄存器,单片机内部只有一个真正意义上的16位寄存器:DPTR。 实际上定时器就是计数器,定时是通过对固定周期的脉冲进行计数达到的,这个固定周期就是机器周期。计数...

2020-03-27 12:50:30 75 0

原创 NLP学习笔记(1)

实现word2vec 的方法包括skip gram 和 continuous bag of words(CBOW)模型 skip gram模型 这是skip gram模型,中间dx1的向量就是单词的representation vcv_cvc​,Vx1的向量是对所有单词出现在某个单词的语境中的...

2020-03-24 23:15:22 35 0

原创 嵌入式系统学习笔记(7)——码制

- ORL是用或实现低四位BCD码和30H的相加,30H就是48,只要事先吧高四位清零,就可以把BCD码变成8位的ASCII码

2020-03-21 23:35:17 26 0

原创 嵌入式系统学习笔记(6)——MCS51汇编语言程序设计

有汇编程序和反汇编程序,可以由机器语言得到汇编语言 不是所有都会默认从0000H开始,保险起见,还是要在开头用ORG 0000H,然后加一条跳转指令到程序存放起始地址 交叉汇编,在一台电脑上汇编,在另一台电脑上运行 注意,除了51单片机之外,其它单片机上电后PC...

2020-03-16 20:52:06 33 0

原创 嵌入式系统学习笔记(5)——指令系统(2)

一般在多个数据连加的时候用到ADDC指令,比如三个数相加,先前两个数用ADD,然后再用ADDC指令加上第三个数 即使溢出也不会使得进位寄存器改变,算一种循环加一的操作,加满了就归0 压缩BCD码的意思是用高4位BCD码表示10进制数的十位,低4位表示个位,而普通BCD码只有4位 ...

2020-03-15 22:05:33 49 0

原创 嵌入式系统学习笔记(4)——指令系统(1)

注意不能MOVR0,R1MOV R_0, R_1MOVR0​,R1​ 或是反过来 当采用Ri时,要先把高8位写入P2口,所以尽量避免用Ri来访问外部RAM存储器,而使用DPTR MOVC指令只用于从外接ROM中读,不用于对外接ROM写,而MOVX可读可写 ...

2020-03-15 20:57:07 41 0

原创 win10自带截图工具

win10自带截图工具按win+shift+s可以呼出

2020-03-15 19:44:34 41 0

原创 嵌入式系统学习笔记(3)——I/O口电路结构、时钟周期、复位

P1口写数据时,将数据写到D0口,向P1W发写信号,这时Q口输出D0,Q非口输出D非,导致P10口输出D0。读数据时,可以从锁存器读,也可以直接从P10管脚读,取决于P1R1和P1R2,而且读锁存器和读管脚可能读到不同的结果,这取决于外接电路。但是读数据之前,要先对D0口写1,使得场效应管截止,这...

2020-03-15 12:39:12 141 0

原创 嵌入式系统学习笔记(2)——单片机的硬件结构:引脚、CPU、存储器

8大部件,单一总线:微处理器、数据存储器、程序存储器、I/O口(P0-P3)、特殊功能寄存器、中断系统、定时/计数器、串行口 P0-P3是4个8位并行I/O口,其中P0口数据地址分时复用,要特别注意 串行口是全双工异步串行的,可以同时输入和输出 51系列有2个16位定时/计数器,52系列有3个 ...

2020-03-14 23:19:01 160 0

原创 数电学习笔记(2)

TTL逻辑器件分成54系列和74系列两大类,其电路结构、逻辑功能和 电气参数完全相同。不同的是54系列工作环境温度、电源工作范围比 74系列的宽。74系列工作环境温度为00C~ 700C,电源电压工作范围为 5V±5%;而54系列工作环境温度为-550C~ +1250C,电源电压工作范 围为5V±...

2020-03-11 11:00:38 37 0

原创 week2课堂笔记

搜索技巧: 必应国际版在谷歌用不了的时候用 知乎好过百度 快照功能 + 表示一定包含,-表示剔除,要加个空格 “ ”内的内容表示不可拆分 *表示通配符,表示不确定内容,模糊搜索,比如how * you, 或者吴*豪 intitle:关键词 是一个指令,表示标题要有该关键词...

2020-03-11 10:31:16 11 0

原创 服务器gpu_v100跑X-Chest-Ray 14笔记

显存估计:每张卡16G的显存,一共4张,跑32的batch size,3*1024*1024的输入,densenet161,改classifier为14分类并sigmoid输出(多标签),导致显存不足,所以改成densenet121,可以,但是不能加载预训练模型,因为v100集群是不联网的 时间...

2020-03-11 10:30:54 124 0

原创 调MURA数据集keras CNN模型笔记

永远不要再把sigmoid写错成softmax cnn层最后加三个fc层比加1个效果要好得多 如果参数太多,可以在最后一个cnn层后面加一个maxpooling整个图 要记得指定data_format=“channel_first",此时batch_norm层要指定axis=1 ...

2020-03-11 10:30:41 129 0

原创 DBPN

这篇blog讲得很好就不自己写了 https://blog.csdn.net/Gavinmiaoc/article/details/80664967

2020-03-11 10:30:24 27 0

原创 Orientation-aware Deep Neural Network for Real Image Super-Resolution

Orientation-aware Deep Neural Network for Real Image Super-Resolution 结果就只有比赛的 由于卷积层过多,为了防止梯度消失,训练时对中间的输出也进行监督,但是真正的输出只是最后一层的输出 一开始用L1loss,随着训练的收...

2020-03-11 10:30:04 49 0

原创 Embedded Block Residual Network: A Recursive Restoration Model for Single-Image Super-Resolution阅读笔记

Embedded Block Residual Network: A Recursive Restoration Model for Single-Image Super-Resolution 结果 论文作者一直在强调,本网络是将图片的低级纹理和复杂纹理分别用不同复杂度的网络取处理,所以效果...

2020-03-11 10:29:54 75 0

原创 Hierarchical Back Projection Network for Image Super-Resolution

Hierarchical Back Projection Network for Image Super-Resolution 结果: 模型图

2020-03-11 10:29:27 35 0

提示
确定要删除当前文章?
取消 删除