LabelImg 开源项目教程
项目地址:https://gitcode.com/gh_mirrors/la/labelImg
项目介绍
LabelImg 是一个图形化的图像标注工具,用于在图像中标注对象的边界框。它使用 Python 编写,并利用 Qt 作为其图形界面。标注结果以 XML 文件形式保存,支持 PASCAL VOC 格式,同时也支持 YOLO 和 CreateML 格式。
项目快速启动
安装
首先,确保你已经安装了 Python 3.0 或更高版本。然后,通过 pip 安装 LabelImg:
pip3 install labelImg
运行
安装完成后,可以通过以下命令启动 LabelImg:
labelImg
基本使用
-
打开 LabelImg 后,选择要标注的数据集目录:
labelImg [IMAGE_PATH]
-
选择标注标签保存目录。
-
点击“查看”设置为“自动保存模式”,即标注后自动保存。
应用案例和最佳实践
应用案例
LabelImg 广泛应用于计算机视觉领域,特别是在目标检测任务中。例如,在自动驾驶项目中,可以使用 LabelImg 标注交通标志、行人、车辆等。
最佳实践
- 数据集准备:确保数据集中的图像清晰且多样化,以提高模型的泛化能力。
- 标注一致性:保持标注的一致性,例如,边界框的紧密度和标签的准确性。
- 定期备份:定期备份标注数据,以防数据丢失。
典型生态项目
ImageNet Utils
ImageNet Utils 是一个与 LabelImg 相关的工具,用于下载图像、创建标签文本等,适用于机器学习任务。
Label Studio
Label Studio 是一个开源数据标注工具,支持图像、文本、超文本、音频、视频和时间序列数据的标注。LabelImg 现在属于 Label Studio 社区的一部分。
通过这些工具和实践,可以有效地进行图像标注,为机器学习模型提供高质量的训练数据。