推荐使用aws-lambda-image:自动图像处理利器

推荐使用aws-lambda-image:自动图像处理利器

aws-lambda-imageAutomatic image resize/reduce on AWS Lambda项目地址:https://gitcode.com/gh_mirrors/aw/aws-lambda-image

项目介绍

aws-lambda-image 是一个基于 AWS Lambda 的函数,旨在自动对上传到 AWS S3 桶的图像进行缩放和压缩处理。一旦有图像上传到指定的 S3 桶,该函数将自动执行图像处理操作,并将处理后的图像重新存储到 S3 中。这个项目非常适合需要高效、自动化的图像处理解决方案的开发者和企业。

项目技术分析

aws-lambda-image 使用 Node.js 开发,充分利用了 AWS Lambda 的无服务器架构优势。它支持 Node.js 8.10 及以上版本,并且从 nodejs10.x 开始,需要通过 AWS Lambda Layer 来安装 ImageMagick 和其他图像处理库。项目通过配置文件 config.json 来定义图像处理的具体参数,如目标桶、备份设置、压缩质量、权限控制等。

项目及技术应用场景

  • 电子商务平台:自动调整产品图片大小,优化加载速度。
  • 社交媒体:自动压缩用户上传的图片,节省存储空间。
  • 内容管理系统:自动处理和优化内容图片,提升用户体验。
  • 移动应用后端:自动调整图片尺寸以适应不同设备屏幕。

项目特点

  • 自动化处理:图像上传后自动进行缩放和压缩,无需人工干预。
  • 灵活配置:通过 config.json 文件,可以灵活设置各种处理参数,如尺寸、质量、格式等。
  • 高效性能:利用 AWS Lambda 的无服务器特性,按需执行,成本效益高。
  • 易于部署:项目提供了详细的部署指南,支持自动打包和上传到 AWS Lambda。
  • 社区支持:项目活跃在 Gitter 社区,开发者可以轻松获取帮助和交流经验。

通过使用 aws-lambda-image,您可以轻松实现图像处理的自动化,提升应用性能,节省存储成本,同时确保图像质量。无论是个人项目还是企业级应用,aws-lambda-image 都是一个值得考虑的优秀选择。

aws-lambda-imageAutomatic image resize/reduce on AWS Lambda项目地址:https://gitcode.com/gh_mirrors/aw/aws-lambda-image

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于YOLOv9实现工业布匹缺陷(破洞、污渍)检测系统python源码+详细运行教程+训练好的模型+评估 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗蒙霁Ella

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值