Nyoka:将机器学习模型导出为PMML的开源库
Nyoka 是一个开源项目,旨在帮助数据科学家将流行的Python机器学习框架中的模型导出为PMML(Predictive Model Markup Language)格式。该项目主要使用 Python 编程语言开发。
项目基础介绍
Nyoka 是一个支持最新PMML标准的Python库。它允许用户通过内置的导出器或创建自定义导出器,将大量的机器学习模型从流行的Python框架中导出为PMML格式。该库提供了约500个Python类,每个类对应PMML标准中的一个标签和所有构造函数参数/属性。此外,Nyoka 还提供了许多便利类和函数,使得在Python环境中读写PMML文件变得更为简单。
核心功能
Nyoka 的核心功能包括:
- 支持多种Python机器学习框架,如 Scikit-Learn、LightGBM、XGBoost、Statsmodels 等。
- 提供了丰富的预处理器,包括标准化、最小-最大标准化、稳健标准化、最大绝对值标准化、标签编码器、二值化、多项式特征、标签二值化、独热编码等。
- 支持文本特征提取,如TF-IDF向量和计数向量。
- 提供了用于时间序列分析的预处理器,如滞后处理(Lag)。
- 包含Jupyter Notebook教程,帮助用户熟悉如何使用Nyoka进行PMML文件的导出。
最近更新的功能
最近更新的功能包括:
- 对PMML 4.4标准的全面支持。
- 添加了新的机器学习框架和模型的导出支持,例如对Keras的支持。
- 优化了部分导出器的性能和稳定性。
- 更新了文档和示例,提高了用户的使用体验。
Nyoka 项目的持续更新和完善,使其成为数据科学家在导出机器学习模型时的重要工具之一。开源社区的贡献和支持,使得这一项目在功能上不断完善,更加贴近用户的需求。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考