Flink CDC Connectors 核心概念:数据管道(Data Pipeline)详解
flink-cdc 项目地址: https://gitcode.com/gh_mirrors/fl/flink-cdc
什么是数据管道
在 Flink CDC 生态中,数据管道(Data Pipeline)是指将数据从源头(Source)经过一系列处理后传输到目标端(Sink)的完整流程。这种管道式(Pipeline)的数据流转模式是 Flink CDC 的核心工作方式,构成了整个ETL(抽取-转换-加载)作业的基础架构。
数据管道的主要特点是:
- 单向流动:数据从源数据库流向目标系统
- 实时性:支持变更数据捕获(CDC),实现近实时同步
- 可扩展性:通过并行度配置可以横向扩展处理能力
数据管道的核心组件
一个完整的数据管道包含三个基本组成部分:
1. 数据源(Source)
定义数据来源,常见配置包括:
- 数据库类型(MySQL/Oracle等)
- 连接信息(主机、端口、认证)
- 需要捕获的表或库
2. 数据目标(Sink)
定义数据去向,常见配置包括:
- 目标系统类型(Doris/Kafka等)
- 连接信息
- 写入参数
3. 管道配置(Pipeline)
控制整个数据流的行为,关键参数包括:
- 作业名称
- 并行度(控制处理能力)
- 运行时模式(流式/批式)
- 时区设置
高级功能
除了基本组件外,数据管道还支持以下增强功能:
数据路由(Route)
允许将源表数据定向到不同的目标表,实现灵活的表映射关系。例如:
- 修改目标数据库名
- 添加表名前缀/后缀
- 自定义表名映射规则
数据转换(Transform)
提供数据加工能力,包括:
- 字段投影(选择/重命名/计算字段)
- 数据过滤(基于条件筛选记录)
- 自定义函数(UDF)处理
配置示例解析
基础配置示例
source:
type: mysql
hostname: localhost
port: 3306
username: root
password: 123456
tables: app_db.\\.*
sink:
type: doris
fenodes: 127.0.0.1:8030
username: root
password: ""
pipeline:
name: Sync MySQL Database to Doris
parallelism: 2
这个配置实现了:
- 从MySQL的app_db库捕获所有表变更
- 将数据写入Doris
- 使用并行度2提高处理能力
高级配置示例
transform:
- source-table: adb.web_order01
projection: \\*, format('%S', product_name) as product_name
filter: addone(id) > 10 AND order_id > 100
- source-table: adb.web_order02
projection: \\*, format('%S', product_name) as product_name
filter: addone(id) > 20 AND order_id > 200
route:
- source-table: app_db.orders
sink-table: ods_db.ods_orders
- source-table: app_db.shipments
sink-table: ods_db.ods_shipments
pipeline:
user-defined-function:
- name: addone
classpath: com.example.functions.AddOneFunctionClass
- name: format
classpath: com.example.functions.FormatFunctionClass
这个扩展配置增加了:
- 数据转换:对特定表进行字段处理和过滤
- 路由规则:修改目标库名和表名前缀
- 自定义函数:注册了addone和format两个UDF
最佳实践建议
- 命名规范:为管道设置有意义的名字,便于监控和管理
- 并行度设置:根据数据量和硬件资源合理配置
- UID前缀:为算子设置明确的前缀,便于状态管理和问题排查
- 时区一致性:确保管道时区与业务时区一致
- 测试验证:复杂转换规则应先在小数据量测试
通过合理配置数据管道,可以实现从简单同步到复杂ETL的各种场景需求,构建高效可靠的数据集成解决方案。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考