Flink CDC Connectors 核心概念:数据管道(Data Pipeline)详解

Flink CDC Connectors 核心概念:数据管道(Data Pipeline)详解

flink-cdc flink-cdc 项目地址: https://gitcode.com/gh_mirrors/fl/flink-cdc

什么是数据管道

在 Flink CDC 生态中,数据管道(Data Pipeline)是指将数据从源头(Source)经过一系列处理后传输到目标端(Sink)的完整流程。这种管道式(Pipeline)的数据流转模式是 Flink CDC 的核心工作方式,构成了整个ETL(抽取-转换-加载)作业的基础架构。

数据管道的主要特点是:

  1. 单向流动:数据从源数据库流向目标系统
  2. 实时性:支持变更数据捕获(CDC),实现近实时同步
  3. 可扩展性:通过并行度配置可以横向扩展处理能力

数据管道的核心组件

一个完整的数据管道包含三个基本组成部分:

1. 数据源(Source)

定义数据来源,常见配置包括:

  • 数据库类型(MySQL/Oracle等)
  • 连接信息(主机、端口、认证)
  • 需要捕获的表或库

2. 数据目标(Sink)

定义数据去向,常见配置包括:

  • 目标系统类型(Doris/Kafka等)
  • 连接信息
  • 写入参数

3. 管道配置(Pipeline)

控制整个数据流的行为,关键参数包括:

  • 作业名称
  • 并行度(控制处理能力)
  • 运行时模式(流式/批式)
  • 时区设置

高级功能

除了基本组件外,数据管道还支持以下增强功能:

数据路由(Route)

允许将源表数据定向到不同的目标表,实现灵活的表映射关系。例如:

  • 修改目标数据库名
  • 添加表名前缀/后缀
  • 自定义表名映射规则

数据转换(Transform)

提供数据加工能力,包括:

  • 字段投影(选择/重命名/计算字段)
  • 数据过滤(基于条件筛选记录)
  • 自定义函数(UDF)处理

配置示例解析

基础配置示例

source:
  type: mysql
  hostname: localhost
  port: 3306
  username: root
  password: 123456
  tables: app_db.\\.*

sink:
  type: doris
  fenodes: 127.0.0.1:8030
  username: root
  password: ""

pipeline:
  name: Sync MySQL Database to Doris
  parallelism: 2

这个配置实现了:

  1. 从MySQL的app_db库捕获所有表变更
  2. 将数据写入Doris
  3. 使用并行度2提高处理能力

高级配置示例

transform:
  - source-table: adb.web_order01
    projection: \\*, format('%S', product_name) as product_name
    filter: addone(id) > 10 AND order_id > 100
  - source-table: adb.web_order02
    projection: \\*, format('%S', product_name) as product_name
    filter: addone(id) > 20 AND order_id > 200

route:
  - source-table: app_db.orders
    sink-table: ods_db.ods_orders
  - source-table: app_db.shipments
    sink-table: ods_db.ods_shipments

pipeline:
  user-defined-function:
    - name: addone
      classpath: com.example.functions.AddOneFunctionClass
    - name: format
      classpath: com.example.functions.FormatFunctionClass

这个扩展配置增加了:

  1. 数据转换:对特定表进行字段处理和过滤
  2. 路由规则:修改目标库名和表名前缀
  3. 自定义函数:注册了addone和format两个UDF

最佳实践建议

  1. 命名规范:为管道设置有意义的名字,便于监控和管理
  2. 并行度设置:根据数据量和硬件资源合理配置
  3. UID前缀:为算子设置明确的前缀,便于状态管理和问题排查
  4. 时区一致性:确保管道时区与业务时区一致
  5. 测试验证:复杂转换规则应先在小数据量测试

通过合理配置数据管道,可以实现从简单同步到复杂ETL的各种场景需求,构建高效可靠的数据集成解决方案。

flink-cdc flink-cdc 项目地址: https://gitcode.com/gh_mirrors/fl/flink-cdc

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邴梅忱Walter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值