Shifted Diffusion 项目使用教程

Shifted Diffusion 项目使用教程

Shifted_DiffusionCode for Shifted Diffusion for Text-to-image Generation (CVPR 2023)项目地址:https://gitcode.com/gh_mirrors/sh/Shifted_Diffusion

1. 项目目录结构及介绍

Shifted_Diffusion/
├── README.md
├── requirements.txt
├── setup.py
├── train.py
├── sft_test.py
├── config/
│   ├── default.yaml
│   └── ...
├── data/
│   └── ...
├── models/
│   └── ...
├── scripts/
│   └── ...
└── ...
  • README.md: 项目介绍和使用说明。
  • requirements.txt: 项目依赖的Python包列表。
  • setup.py: 项目安装脚本。
  • train.py: 训练模型的主脚本。
  • sft_test.py: 测试Shifted Diffusion模型的脚本。
  • config/: 存放项目的配置文件,如default.yaml
  • data/: 存放训练和测试数据。
  • models/: 存放预训练模型和训练后的模型。
  • scripts/: 存放辅助脚本。

2. 项目启动文件介绍

train.py

train.py 是用于训练Shifted Diffusion模型的主脚本。通过该脚本,用户可以启动训练过程,并根据配置文件中的参数进行模型训练。

accelerate launch --mixed_precision="fp16" train.py

sft_test.py

sft_test.py 是用于测试Shifted Diffusion模型的脚本。用户可以通过该脚本生成图像,并评估模型的性能。

python sft_test.py

3. 项目的配置文件介绍

config/default.yaml

config/default.yaml 是项目的默认配置文件,包含了训练和测试过程中所需的各项参数。以下是配置文件的部分内容示例:

# 数据路径
data_path: "data/"

# 模型路径
model_path: "models/"

# 训练参数
batch_size: 32
learning_rate: 0.0001
num_epochs: 100

# 其他参数
...

用户可以根据自己的需求修改配置文件中的参数,以适应不同的训练和测试场景。


以上是Shifted Diffusion项目的使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些内容能帮助你更好地理解和使用该项目。

Shifted_DiffusionCode for Shifted Diffusion for Text-to-image Generation (CVPR 2023)项目地址:https://gitcode.com/gh_mirrors/sh/Shifted_Diffusion

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汤品琼Valerie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值