pytrends 使用教程
pytrends Pseudo API for Google Trends 项目地址: https://gitcode.com/gh_mirrors/py/pytrends
1. 项目介绍
pytrends
是一个用于自动化下载 Google Trends 报告的 Python 库。它提供了一个简单的接口,可以让我们获取特定关键词在 Google Trends 上的搜索趋势。该项目是基于 Google Trends 的非官方 API,仅当 Google 的后端没有发生变化时有效。如果 Google 更改了他们的后端,用户可以自由地贡献代码以保持项目的更新。
2. 项目快速启动
首先,确保您的环境中已经安装了 Python 3.3 或更高版本。接下来,使用以下命令安装 pytrends
:
pip install pytrends
安装依赖库:
pip install requests lxml pandas
以下是一个快速启动示例,演示如何使用 pytrends
获取关键词的搜索趋势:
from pytrends.request import TrendReq
# 创建一个 TrendReq 实例
pytrends = TrendReq(hl='zh-CN', tz=360)
# 构建请求数据负载
keywords = ["区块链"]
pytrends.build_payload(kw_list=keywords, cat=0, timeframe='today 5-y', geo='', gprop='')
# 获取兴趣随时间的变化
interest_over_time_df = pytrends.interest_over_time()
# 打印结果
print(interest_over_time_df)
3. 应用案例和最佳实践
案例一:获取多个关键词的搜索趋势
# 定义关键词列表
keywords = ["区块链", "人工智能", "大数据"]
# 构建请求数据负载
pytrends.build_payload(kw_list=keywords, cat=0, timeframe='today 1-y', geo='', gprop='')
# 获取兴趣随时间的变化
interest_over_time_df = pytrends.interest_over_time()
# 打印结果
print(interest_over_time_df)
案例二:获取特定时间段的关键词搜索趋势
# 定义关键词列表和时间框架
keywords = ["新冠病毒"]
timeframe = '2020-01-01 2020-12-31'
# 构建请求数据负载
pytrends.build_payload(kw_list=keywords, cat=0, timeframe=timeframe, geo='', gprop='')
# 获取兴趣随时间的变化
interest_over_time_df = pytrends.interest_over_time()
# 打印结果
print(interest_over_time_df)
4. 典型生态项目
由于 pytrends
是一个用于获取 Google Trends 数据的工具,它可以与多种类型的项目结合使用,例如:
- 数据分析项目:使用
pytrends
获取的数据可以进行进一步的数据分析,比如时间序列分析、趋势预测等。 - 市场研究工具:集成
pytrends
可以帮助企业和研究人员了解市场上特定关键词或产品的搜索趋势。 - 新闻监控平台:通过监控关键词的搜索趋势,新闻机构可以及时获取公众关注的热点话题。
这些只是 pytrends
可能应用的几个场景,它的用途可以根据用户的需求进行扩展。
pytrends Pseudo API for Google Trends 项目地址: https://gitcode.com/gh_mirrors/py/pytrends