Keras AdaBound 项目教程

Keras AdaBound 项目教程

keras-adaboundKeras implementation of AdaBound项目地址:https://gitcode.com/gh_mirrors/ke/keras-adabound

1. 项目的目录结构及介绍

keras-adabound/
├── LICENSE
├── README.md
├── adabound.py
├── adabound_tf.py
├── cifar10.py
├── resnet.py
└── idea/
    ├── images/
    └── weights/
  • LICENSE: 项目的许可证文件。
  • README.md: 项目的说明文档。
  • adabound.py: AdaBound 优化器的实现文件。
  • adabound_tf.py: TensorFlow 后端的 AdaBound 优化器实现文件。
  • cifar10.py: CIFAR-10 数据集的示例代码。
  • resnet.py: ResNet 模型的示例代码。
  • idea/: 包含项目相关的图像和权重文件。

2. 项目的启动文件介绍

项目的启动文件主要是 adabound.pyadabound_tf.py。这两个文件分别实现了 Keras 和 TensorFlow 后端的 AdaBound 优化器。

adabound.py

该文件包含了 AdaBound 优化器的实现,可以直接在 Keras 模型中使用。

from keras_adabound import AdaBound

model.compile(optimizer=AdaBound(lr=1e-3, final_lr=0.1), loss='model_loss')

adabound_tf.py

该文件包含了 TensorFlow 后端的 AdaBound 优化器实现,适用于需要 TensorFlow 后端的场景。

from keras_adabound import AdaBound

model.compile(optimizer=AdaBound(lr=1e-3, final_lr=0.1), loss='model_loss')

3. 项目的配置文件介绍

项目中没有显式的配置文件,但可以通过修改 adabound.pyadabound_tf.py 中的参数来调整优化器的行为。

参数调整

  • lr: 初始学习率。
  • final_lr: 最终学习率。
  • gamma: 学习率衰减因子。
  • weight_decay: 权重衰减参数。

示例:

from keras_adabound import AdaBound

optm = AdaBound(lr=1e-3, final_lr=0.1, gamma=1e-3, weight_decay=0)

通过调整这些参数,可以优化模型的训练过程。

keras-adaboundKeras implementation of AdaBound项目地址:https://gitcode.com/gh_mirrors/ke/keras-adabound

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

潘妙霞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值