Keras AdaBound 项目教程
keras-adaboundKeras implementation of AdaBound项目地址:https://gitcode.com/gh_mirrors/ke/keras-adabound
1. 项目的目录结构及介绍
keras-adabound/
├── LICENSE
├── README.md
├── adabound.py
├── adabound_tf.py
├── cifar10.py
├── resnet.py
└── idea/
├── images/
└── weights/
- LICENSE: 项目的许可证文件。
- README.md: 项目的说明文档。
- adabound.py: AdaBound 优化器的实现文件。
- adabound_tf.py: TensorFlow 后端的 AdaBound 优化器实现文件。
- cifar10.py: CIFAR-10 数据集的示例代码。
- resnet.py: ResNet 模型的示例代码。
- idea/: 包含项目相关的图像和权重文件。
2. 项目的启动文件介绍
项目的启动文件主要是 adabound.py
和 adabound_tf.py
。这两个文件分别实现了 Keras 和 TensorFlow 后端的 AdaBound 优化器。
adabound.py
该文件包含了 AdaBound 优化器的实现,可以直接在 Keras 模型中使用。
from keras_adabound import AdaBound
model.compile(optimizer=AdaBound(lr=1e-3, final_lr=0.1), loss='model_loss')
adabound_tf.py
该文件包含了 TensorFlow 后端的 AdaBound 优化器实现,适用于需要 TensorFlow 后端的场景。
from keras_adabound import AdaBound
model.compile(optimizer=AdaBound(lr=1e-3, final_lr=0.1), loss='model_loss')
3. 项目的配置文件介绍
项目中没有显式的配置文件,但可以通过修改 adabound.py
和 adabound_tf.py
中的参数来调整优化器的行为。
参数调整
- lr: 初始学习率。
- final_lr: 最终学习率。
- gamma: 学习率衰减因子。
- weight_decay: 权重衰减参数。
示例:
from keras_adabound import AdaBound
optm = AdaBound(lr=1e-3, final_lr=0.1, gamma=1e-3, weight_decay=0)
通过调整这些参数,可以优化模型的训练过程。
keras-adaboundKeras implementation of AdaBound项目地址:https://gitcode.com/gh_mirrors/ke/keras-adabound