Keras AdaBound 使用教程
keras-adaboundKeras implementation of AdaBound项目地址:https://gitcode.com/gh_mirrors/ke/keras-adabound
项目介绍
Keras AdaBound 是一个基于 Keras 框架实现的 AdaBound 优化器。AdaBound 优化器是一种自适应梯度方法,通过动态调整学习率的边界来优化训练过程。该项目是 PyTorch 中 AdaBound 优化器的 Keras 移植版本,旨在提供一个类似于 Adam 优化器的替代方案,同时支持 AMSBound 变体。
项目快速启动
安装
首先,通过 pip 安装 keras-adabound
包:
pip install keras-adabound
使用示例
以下是一个简单的使用示例,展示了如何在 Keras 模型中使用 AdaBound 优化器:
from keras_adabound import AdaBound
from keras.models import Sequential
from keras.layers import Dense
# 创建一个简单的模型
model = Sequential()
model.add(Dense(64, input_dim=100, activation='relu'))
model.add(Dense(10, activation='softmax'))
# 使用 AdaBound 优化器编译模型
model.compile(optimizer=AdaBound(lr=1e-3, final_lr=0.1), loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, epochs=10, batch_size=32)
应用案例和最佳实践
案例1:CIFAR-10 图像分类
在 CIFAR-10 数据集上使用 AdaBound 优化器进行图像分类:
from keras_adabound import AdaBound
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout
from keras.utils import to_categorical
# 加载数据
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)
# 构建模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(32, 32, 3)))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
# 使用 AdaBound 优化器编译模型
model.compile(optimizer=AdaBound(lr=1e-3, final_lr=0.1), loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, epochs=20, batch_size=64, validation_data=(x_test, y_test))
最佳实践
- 调整学习率:根据具体任务调整
lr
和final_lr
参数,以获得最佳性能。 - 权重衰减:通过添加 L2 正则化器来实现权重衰减,以防止过拟合。
典型生态项目
TensorFlow
Keras AdaBound 优化器主要支持 TensorFlow 后端。TensorFlow 是一个广泛使用的深度学习框架,提供了丰富的工具和库来支持各种
keras-adaboundKeras implementation of AdaBound项目地址:https://gitcode.com/gh_mirrors/ke/keras-adabound