Keras AdaBound 使用教程

Keras AdaBound 使用教程

keras-adaboundKeras implementation of AdaBound项目地址:https://gitcode.com/gh_mirrors/ke/keras-adabound

项目介绍

Keras AdaBound 是一个基于 Keras 框架实现的 AdaBound 优化器。AdaBound 优化器是一种自适应梯度方法,通过动态调整学习率的边界来优化训练过程。该项目是 PyTorch 中 AdaBound 优化器的 Keras 移植版本,旨在提供一个类似于 Adam 优化器的替代方案,同时支持 AMSBound 变体。

项目快速启动

安装

首先,通过 pip 安装 keras-adabound 包:

pip install keras-adabound

使用示例

以下是一个简单的使用示例,展示了如何在 Keras 模型中使用 AdaBound 优化器:

from keras_adabound import AdaBound
from keras.models import Sequential
from keras.layers import Dense

# 创建一个简单的模型
model = Sequential()
model.add(Dense(64, input_dim=100, activation='relu'))
model.add(Dense(10, activation='softmax'))

# 使用 AdaBound 优化器编译模型
model.compile(optimizer=AdaBound(lr=1e-3, final_lr=0.1), loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, epochs=10, batch_size=32)

应用案例和最佳实践

案例1:CIFAR-10 图像分类

在 CIFAR-10 数据集上使用 AdaBound 优化器进行图像分类:

from keras_adabound import AdaBound
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout
from keras.utils import to_categorical

# 加载数据
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)

# 构建模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(32, 32, 3)))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))

# 使用 AdaBound 优化器编译模型
model.compile(optimizer=AdaBound(lr=1e-3, final_lr=0.1), loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, epochs=20, batch_size=64, validation_data=(x_test, y_test))

最佳实践

  1. 调整学习率:根据具体任务调整 lrfinal_lr 参数,以获得最佳性能。
  2. 权重衰减:通过添加 L2 正则化器来实现权重衰减,以防止过拟合。

典型生态项目

TensorFlow

Keras AdaBound 优化器主要支持 TensorFlow 后端。TensorFlow 是一个广泛使用的深度学习框架,提供了丰富的工具和库来支持各种

keras-adaboundKeras implementation of AdaBound项目地址:https://gitcode.com/gh_mirrors/ke/keras-adabound

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宫俊潇Gresham

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值