InternGPT 项目教程
1. 项目目录结构及介绍
InternGPT 项目的目录结构如下:
InternGPT/
├── assets/
├── configs/
├── docker/
├── iGPT/
├── tests/
├── third-party/
├── .gitignore
├── INSTALL.md
├── LICENSE
├── README.md
├── README_CN.md
├── app.py
└── requirements.txt
目录介绍
- assets/: 存放项目所需的静态资源文件。
- configs/: 存放项目的配置文件。
- docker/: 存放与 Docker 相关的文件,用于容器化部署。
- iGPT/: 项目的主要代码目录,包含核心功能实现。
- tests/: 存放项目的测试代码。
- third-party/: 存放第三方库或工具。
- .gitignore: Git 忽略文件配置。
- INSTALL.md: 项目安装指南。
- LICENSE: 项目许可证文件。
- README.md: 项目英文介绍文档。
- README_CN.md: 项目中文介绍文档。
- app.py: 项目的启动文件。
- requirements.txt: 项目依赖库列表。
2. 项目启动文件介绍
app.py
app.py
是 InternGPT 项目的启动文件。它负责加载配置、初始化模型、启动服务等核心功能。以下是启动文件的主要功能介绍:
- 加载配置: 通过命令行参数或配置文件加载项目的运行配置。
- 初始化模型: 根据配置加载所需的 AI 模型,如 HuskyVQA、SegmentAnything 等。
- 启动服务: 启动 Gradio 服务,提供用户交互界面。
启动命令示例
python -u app.py --load "HuskyVQA_cuda:0 SegmentAnything_cuda:0 ImageOCRRecognition_cuda:0" --port 3456 -e
3. 项目配置文件介绍
configs/
目录
configs/
目录下存放了项目的配置文件,用于定义项目的各种参数和设置。以下是一些常见的配置文件:
- config.yaml: 主配置文件,定义了项目的全局配置参数。
- model_config.yaml: 模型配置文件,定义了各个 AI 模型的加载路径和参数。
- server_config.yaml: 服务配置文件,定义了服务的端口、日志级别等参数。
配置文件示例
# config.yaml
global:
debug: true
log_level: INFO
models:
HuskyVQA:
path: "path/to/HuskyVQA"
device: "cuda:0"
SegmentAnything:
path: "path/to/SegmentAnything"
device: "cuda:0"
通过这些配置文件,用户可以灵活地调整项目的运行参数,以适应不同的环境和需求。