ProPainter 项目使用教程
项目地址:https://gitcode.com/gh_mirrors/pr/ProPainter
1. 项目目录结构及介绍
ProPainter 项目的目录结构如下:
ProPainter/
├── assets/
├── configs/
├── core/
├── datasets/
├── inputs/
├── model/
├── scripts/
├── utils/
├── web-demos/
│ └── hugging_face/
├── weights/
├── .gitignore
├── LICENSE
├── README.md
├── inference_propainter.py
├── requirements.txt
└── train.py
目录介绍:
- assets/: 存放项目相关的资源文件。
- configs/: 存放项目的配置文件,如训练和评估的配置文件。
- core/: 存放项目的核心代码,包括模型定义、数据处理等。
- datasets/: 存放数据集文件,包括训练和测试数据。
- inputs/: 存放输入数据,如视频和掩码文件。
- model/: 存放模型的定义和实现代码。
- scripts/: 存放脚本文件,如数据预处理、评估脚本等。
- utils/: 存放工具函数和辅助代码。
- web-demos/hugging_face/: 存放与 Hugging Face 相关的演示代码。
- weights/: 存放预训练模型权重文件。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- inference_propainter.py: 项目的主要推理脚本。
- requirements.txt: 项目依赖库列表。
- train.py: 项目的主要训练脚本。
2. 项目启动文件介绍
inference_propainter.py
这是 ProPainter 项目的主要推理脚本,用于对视频进行修复。你可以通过以下命令运行该脚本:
python inference_propainter.py --video <视频路径> --mask <掩码路径>
train.py
这是 ProPainter 项目的主要训练脚本,用于训练视频修复模型。你可以通过以下命令运行该脚本:
python train.py -c configs/train_propainter.json
3. 项目的配置文件介绍
configs/train_propainter.json
这是 ProPainter 项目的训练配置文件,包含了训练过程中所需的各项参数设置,如数据路径、模型参数、优化器参数等。
configs/train_flowcomp.json
这是用于训练 Recurrent Flow Completion Network 的配置文件,包含了训练过程中所需的各项参数设置。
requirements.txt
这是项目的依赖库列表,包含了项目运行所需的 Python 库及其版本信息。你可以通过以下命令安装这些依赖库:
pip install -r requirements.txt
通过以上介绍,你应该能够了解 ProPainter 项目的目录结构、启动文件和配置文件的基本情况,并能够开始使用该项目进行视频修复任务。