Tablesaw项目核心数据结构Table使用指南

Tablesaw项目核心数据结构Table使用指南

tablesaw tablesaw 项目地址: https://gitcode.com/gh_mirrors/tabl/tablesaw

概述

Tablesaw是一个高效的Java数据分析库,其核心数据结构Table承载了大部分数据处理功能。本文将全面介绍Table的创建、操作和分析方法,帮助开发者掌握这一强大工具。

Table基础特性

Tablesaw中的Table具有以下显著特点:

  1. 全功能容器:几乎所有数据操作都围绕Table展开
  2. 链式操作:多数方法返回新的Table实例,支持方法链
  3. 列式存储:数据按列存储而非行存储,提高处理效率
  4. 惰性计算:部分操作延迟执行,优化性能

创建Table的多种方式

编程式创建

// 创建空表
Table t = Table.create("学生信息");

// 创建时添加列
DoubleColumn 年龄 = DoubleColumn.create("年龄");
StringColumn 姓名 = StringColumn.create("姓名");
Table t = Table.create("学生信息", 姓名, 年龄);

从外部数据源加载

支持多种数据源导入:

  • CSV/TSV等文本文件
  • 数据库查询结果集
  • 内存数据流
// 从CSV加载
Table t = Table.read().csv("data.csv");

// 指定列类型加载
ColumnType[] types = {LOCAL_DATE, INTEGER, DOUBLE};
Table t = Table.read().usingOptions(
    CsvReadOptions.builder("data.csv")
        .columnTypes(types)
        .build()
);

数据查看与元数据

数据预览

// 默认显示首尾各10行
table.print();

// 自定义显示行数
table.first(5).print();  // 前5行
table.last(3).print();   // 后3行

元数据获取

// 表结构信息
table.structure().print();

// 维度信息
System.out.println(table.shape());  // 输出: 1000 rows X 5 cols

// 列信息
List<String> 列名 = table.columnNames();
Column<?> 特定列 = table.column("列名");

列操作

增删列

// 添加列
DoubleColumn 新列 = DoubleColumn.create("成绩");
table.addColumns(新列);

// 指定位置插入
table.addColumn(2, 新列);

// 删除列
table.removeColumns("无效列");

// 保留指定列
Table 精简表 = table.select("姓名", "年龄", "成绩");

列类型处理

Tablesaw支持多种列类型,获取时需注意类型转换:

// 获取特定类型列
DoubleColumn 数值列 = table.doubleColumn("成绩");
StringColumn 文本列 = table.stringColumn("姓名");

// 类型转换
DateColumn 日期列 = (DateColumn) table.column("日期");

数据操作

数据过滤

// 简单过滤
Table 结果 = table.where(
    table.stringColumn("科目").isEqualTo("数学")
);

// 组合条件
Table 高分学生 = table.where(
    table.doubleColumn("成绩").isGreaterThan(90)
        .and(table.stringColumn("年级").isEqualTo("高三"))
);

数据排序

// 单列排序
table.sortAscendingOn("成绩");

// 多列排序
table.sortOn(
    "-成绩",  // 降序
    "姓名"    // 升序
);

表格合并

// 纵向追加(相同结构)
Table 合并表 = 表1.append(表2);

// 横向合并(相同行数)
表1.concat(表2);

数据分析

数据汇总

// 基本统计量
Table 汇总 = table.summarize(
    "成绩", mean, max, min, stdDev
).apply();

// 分组统计
Table 分组汇总 = table.summarize(
    "成绩", mean
).by("班级");

交叉分析

// 简单交叉表
Table 交叉表 = table.xTabCounts("班级", "科目");

// 带统计的交叉表
Table 统计交叉表 = table.xTabTable(
    "班级", "科目", "成绩", mean
);

性能优化技巧

  1. 批量操作:尽量使用内置方法而非循环
  2. 类型匹配:操作时确保列类型正确
  3. 链式调用:利用返回新Table的特性减少中间变量
  4. 惰性加载:大数据集考虑分批处理

结语

Tablesaw的Table数据结构提供了丰富的数据处理能力,从简单的数据查看到复杂的分析操作都能高效完成。掌握这些核心方法后,开发者可以构建出强大的数据分析应用。建议在实际项目中多练习这些操作,逐步熟悉Tablesaw的强大功能。

tablesaw tablesaw 项目地址: https://gitcode.com/gh_mirrors/tabl/tablesaw

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凌霆贝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值