Tablesaw项目核心数据结构Table使用指南
tablesaw 项目地址: https://gitcode.com/gh_mirrors/tabl/tablesaw
概述
Tablesaw是一个高效的Java数据分析库,其核心数据结构Table承载了大部分数据处理功能。本文将全面介绍Table的创建、操作和分析方法,帮助开发者掌握这一强大工具。
Table基础特性
Tablesaw中的Table具有以下显著特点:
- 全功能容器:几乎所有数据操作都围绕Table展开
- 链式操作:多数方法返回新的Table实例,支持方法链
- 列式存储:数据按列存储而非行存储,提高处理效率
- 惰性计算:部分操作延迟执行,优化性能
创建Table的多种方式
编程式创建
// 创建空表
Table t = Table.create("学生信息");
// 创建时添加列
DoubleColumn 年龄 = DoubleColumn.create("年龄");
StringColumn 姓名 = StringColumn.create("姓名");
Table t = Table.create("学生信息", 姓名, 年龄);
从外部数据源加载
支持多种数据源导入:
- CSV/TSV等文本文件
- 数据库查询结果集
- 内存数据流
// 从CSV加载
Table t = Table.read().csv("data.csv");
// 指定列类型加载
ColumnType[] types = {LOCAL_DATE, INTEGER, DOUBLE};
Table t = Table.read().usingOptions(
CsvReadOptions.builder("data.csv")
.columnTypes(types)
.build()
);
数据查看与元数据
数据预览
// 默认显示首尾各10行
table.print();
// 自定义显示行数
table.first(5).print(); // 前5行
table.last(3).print(); // 后3行
元数据获取
// 表结构信息
table.structure().print();
// 维度信息
System.out.println(table.shape()); // 输出: 1000 rows X 5 cols
// 列信息
List<String> 列名 = table.columnNames();
Column<?> 特定列 = table.column("列名");
列操作
增删列
// 添加列
DoubleColumn 新列 = DoubleColumn.create("成绩");
table.addColumns(新列);
// 指定位置插入
table.addColumn(2, 新列);
// 删除列
table.removeColumns("无效列");
// 保留指定列
Table 精简表 = table.select("姓名", "年龄", "成绩");
列类型处理
Tablesaw支持多种列类型,获取时需注意类型转换:
// 获取特定类型列
DoubleColumn 数值列 = table.doubleColumn("成绩");
StringColumn 文本列 = table.stringColumn("姓名");
// 类型转换
DateColumn 日期列 = (DateColumn) table.column("日期");
数据操作
数据过滤
// 简单过滤
Table 结果 = table.where(
table.stringColumn("科目").isEqualTo("数学")
);
// 组合条件
Table 高分学生 = table.where(
table.doubleColumn("成绩").isGreaterThan(90)
.and(table.stringColumn("年级").isEqualTo("高三"))
);
数据排序
// 单列排序
table.sortAscendingOn("成绩");
// 多列排序
table.sortOn(
"-成绩", // 降序
"姓名" // 升序
);
表格合并
// 纵向追加(相同结构)
Table 合并表 = 表1.append(表2);
// 横向合并(相同行数)
表1.concat(表2);
数据分析
数据汇总
// 基本统计量
Table 汇总 = table.summarize(
"成绩", mean, max, min, stdDev
).apply();
// 分组统计
Table 分组汇总 = table.summarize(
"成绩", mean
).by("班级");
交叉分析
// 简单交叉表
Table 交叉表 = table.xTabCounts("班级", "科目");
// 带统计的交叉表
Table 统计交叉表 = table.xTabTable(
"班级", "科目", "成绩", mean
);
性能优化技巧
- 批量操作:尽量使用内置方法而非循环
- 类型匹配:操作时确保列类型正确
- 链式调用:利用返回新Table的特性减少中间变量
- 惰性加载:大数据集考虑分批处理
结语
Tablesaw的Table数据结构提供了丰富的数据处理能力,从简单的数据查看到复杂的分析操作都能高效完成。掌握这些核心方法后,开发者可以构建出强大的数据分析应用。建议在实际项目中多练习这些操作,逐步熟悉Tablesaw的强大功能。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考