VITS-fast-fine-tuning 教程
项目地址:https://gitcode.com/gh_mirrors/vi/VITS-fast-fine-tuning
1. 项目目录结构及介绍
以下是VITS-fast-fine-tuning项目的基本目录结构:
VITS-fast-fine-tuning/
├── inference # 推理相关代码
│ ├── inference.exe # 推理程序
│ └── ... # 其他可能的推理相关文件
├── finetune_speaker.json # 配置文件
└── G_latest.pth # 模型权重文件
inference/
: 包含用于语音合成和转换的推理程序。inference.exe
: 是主要的执行文件,用于加载模型并进行推断。finetune_speaker.json
: 定义了模型微调的参数,例如说话人的信息。G_latest.pth
: 存储预训练或微调后的模型权重。
2. 项目的启动文件介绍
项目的主入口点是inference.exe
。这是一个可执行文件,通常不需要修改源码即可运行。通过提供适当的输入参数和配置文件,你可以启动模型并执行语音合成或转换任务。
在命令行中,你可能需要输入以下命令来运行该程序(请替换<config_file>
和<model_path>
为实际路径):
inference.exe --config <config_file> --model <model_path>
配置文件finetune_speaker.json
将被用来传递特定的参数,如说话人的ID或其他模型所需的设置。
3. 项目的配置文件介绍
finetune_speaker.json
是项目的重要组成部分,它定义了模型微调的参数。一个示例配置文件可能包括以下字段:
{
"model": {
"type": "vits",
"resume_from_checkpoint": "path/to/G Latest.pth"
},
"data": {
"speakers": ["speaker1", "speaker2"],
"manifests": {
"speaker1": "path/to/speaker1_manifest.json",
"speaker2": "path/to/speaker2_manifest.json"
}
},
"train": {
"epochs": 500,
"batch_size": 8,
...
},
"infer": {
"text_list": "path/to/input_text.txt",
"output_dir": "./outputs",
...
}
}
"model"
: 指定模型类型(如VITS),以及是否从检查点恢复训练。"data"
: 提供说话人列表及其对应的语音数据清单文件。"train"
: 训练相关的参数,如总 epoch 数和批次大小。"infer"
: 推理阶段的配置,包括文本列表路径和输出目录。
请注意,为了正确运行,你需要根据你的具体环境和可用资源更新配置文件中的路径和参数。