SyntheticControlMethods 使用教程
SyntheticControlMethods项目地址:https://gitcode.com/gh_mirrors/sy/SyntheticControlMethods
项目介绍
SyntheticControlMethods 是一个用于因果推断的 Python 包,它实现了合成控制方法来估计干预对面板数据或时间序列的因果效应。例如,可以使用该方法来估计1990年德国统一对西德经济的影响。
项目快速启动
安装
首先,通过 pip 安装 SyntheticControlMethods
包:
pip install SyntheticControlMethods
使用示例
以下是一个简单的示例,复制 Abadie、Diamond 和 Hainmueller (2015) 的研究,使用合成控制方法估计1990年德国统一对西德经济的影响:
# 导入必要的包
import pandas as pd
from SyntheticControlMethods import Synth
# 导入数据
data = pd.read_csv("examples/german_reunification.csv")
data = data.drop(columns="code", axis=1)
# 拟合经典合成控制模型
sc = Synth(data, "gdp", "country", "year", 1990, "West Germany", pen=0)
# 可视化合成控制
sc.plot(["original", "pointwise", "cumulative"], treated_label="West Germany")
应用案例和最佳实践
案例研究:德国统一对西德经济的影响
该包的一个典型应用是估计德国统一对西德经济的影响。通过合成控制方法,可以生成一个“合成西德”,其经济表现与实际西德在统一前的表现相似。通过比较统一后实际西德与合成西德的经济表现,可以估计统一对经济的因果效应。
最佳实践
- 数据准备:确保数据格式正确,包括必要的列(如国家、年份、GDP等)。
- 参数调整:根据具体问题调整模型参数,如惩罚系数
pen
。 - 结果验证:通过多种方法(如点对点比较、累积比较)验证结果的可靠性。
典型生态项目
相关项目
- CausalImpact:一个用于时间序列数据的因果推断包,与合成控制方法类似,但适用于不同类型的数据。
- DoWhy:一个用于因果推断的 Python 库,提供了更广泛的因果推断方法和工具。
这些项目与 SyntheticControlMethods 一起,构成了一个丰富的因果推断工具生态,适用于不同的研究和应用场景。
SyntheticControlMethods项目地址:https://gitcode.com/gh_mirrors/sy/SyntheticControlMethods