ONNXT5 开源项目教程

ONNXT5 开源项目教程

onnxt5Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.项目地址:https://gitcode.com/gh_mirrors/on/onnxt5

项目介绍

ONNXT5 是一个基于 ONNX (Open Neural Network Exchange) 的开源项目,旨在提供一个将 T5 模型转换为 ONNX 格式的工具。T5 是 Google 开发的一种先进的文本到文本转换模型,广泛应用于自然语言处理任务。通过 ONNXT5,用户可以轻松地将 T5 模型部署到支持 ONNX 的多种平台和框架中,从而实现高效的推理和应用。

项目快速启动

安装依赖

首先,确保你已经安装了必要的依赖库:

pip install onnxt5

转换模型

以下是一个简单的示例,展示如何将 T5 模型转换为 ONNX 格式:

from onnxt5 import T5Converter

# 初始化转换器
converter = T5Converter("t5-small")

# 转换模型
converter.convert()

# 保存 ONNX 模型
converter.save_onnx("t5-small.onnx")

加载和运行模型

转换完成后,可以使用 ONNX Runtime 加载和运行模型:

import onnxruntime as ort

# 加载 ONNX 模型
session = ort.InferenceSession("t5-small.onnx")

# 准备输入数据
input_text = "Translate this to French: Hello, how are you?"
input_ids = converter.tokenizer.encode(input_text, return_tensors="pt")

# 运行推理
outputs = session.run(None, {"input_ids": input_ids.numpy()})

# 解码输出
output_text = converter.tokenizer.decode(outputs[0][0], skip_special_tokens=True)
print(output_text)

应用案例和最佳实践

文本翻译

ONNXT5 可以用于快速实现文本翻译功能。以下是一个简单的文本翻译示例:

input_text = "Translate this to French: Hello, how are you?"
output_text = converter.translate(input_text, target_language="fr")
print(output_text)

文本摘要

除了翻译,ONNXT5 还可以用于生成文本摘要:

input_text = "The quick brown fox jumps over the lazy dog."
output_text = converter.summarize(input_text)
print(output_text)

典型生态项目

ONNX Runtime

ONNX Runtime 是一个高性能的推理引擎,支持多种硬件和平台。通过 ONNXT5 转换的模型可以在 ONNX Runtime 上运行,实现高效的推理。

Hugging Face Transformers

Hugging Face Transformers 是一个广泛使用的自然语言处理库,提供了大量的预训练模型。ONNXT5 可以与 Hugging Face Transformers 结合使用,将这些模型转换为 ONNX 格式,以便在不同的平台上部署和运行。

通过这些生态项目的支持,ONNXT5 可以更好地融入现有的开发流程,提供更加灵活和高效的解决方案。

onnxt5Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.项目地址:https://gitcode.com/gh_mirrors/on/onnxt5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陶真蔷Scott

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值