Machine Learning Yearning 解析:如何合理设置开发集与测试集规模

Machine Learning Yearning 解析:如何合理设置开发集与测试集规模

machine-learning-yearning-cn Machine Learning Yearning 中文版 - 《机器学习训练秘籍》 - Andrew Ng 著 machine-learning-yearning-cn 项目地址: https://gitcode.com/gh_mirrors/ma/machine-learning-yearning-cn

开发集规模的核心考量

在机器学习项目中,开发集(Dev Set)的规模设置直接影响我们评估模型改进效果的能力。开发集需要足够大,以便能够可靠地区分不同算法之间的性能差异。

开发集规模的经验法则

根据实践经验,开发集的合理规模通常在1,000到10,000个样本之间。这个范围能够满足大多数项目的需求:

  • 对于100个样本的小型开发集,只能检测到约1%的性能差异
  • 10,000个样本的开发集可以可靠地检测到0.1%的性能提升

特殊场景下的规模调整

在某些对性能极其敏感的领域(如广告推荐、搜索引擎等),即使是0.01%的性能提升也可能带来显著的业务价值。这类场景下,开发集规模可能需要远超10,000个样本,以确保能够捕捉到微小的改进。

测试集规模的确定原则

测试集的主要目的是对系统性能进行最终评估,其规模应保证评估结果具有高度可信度。

传统数据规模下的策略

对于中等规模的数据集(100-10,000个样本),常见的做法是:

  • 将约30%的数据分配给测试集
  • 其余70%用于训练集和开发集

大数据时代的调整

当面对海量数据(如超过10亿样本)时:

  • 开发集和测试集的绝对数量仍需保证
  • 但占总数据的比例可以显著降低
  • 关键在于确保评估的统计可靠性,而非盲目追求大比例

统计显著性的实际考量

虽然理论上可以使用统计显著性检验来评估算法差异,但在实际工程实践中:

  1. 大多数团队不会过度关注统计显著性
  2. 除非是学术研究发表需要
  3. 工程实践中更关注实际业务影响

实用建议

  1. 优先保证开发集规模:确保能检测到业务上重要的性能差异
  2. 测试集足够评估:规模应能对系统性能给出可靠评估
  3. 避免过度分配:不必将过多数据分配给评估集而牺牲训练数据
  4. 业务导向:根据业务对性能的敏感度调整评估集规模

记住,评估集的设置最终服务于模型迭代和业务目标,应根据具体场景灵活调整,而非机械遵循固定规则。

machine-learning-yearning-cn Machine Learning Yearning 中文版 - 《机器学习训练秘籍》 - Andrew Ng 著 machine-learning-yearning-cn 项目地址: https://gitcode.com/gh_mirrors/ma/machine-learning-yearning-cn

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

崔锴业Wolf

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值