ZenML 项目使用教程
1、项目介绍
ZenML 项目是一个专注于生产级机器学习用例的开源项目集合。这些项目由 ZenML 团队和社区共同维护,旨在提供一个现成的 MLOps 工作流,用户可以根据自己的应用需求进行调整。ZenML 是一个可扩展的开源 MLOps 框架,适用于创建生产就绪的 ML 管道。它具有简单灵活的语法,云和工具无关,并且具有面向 ML 工作流的接口和抽象。
2、项目快速启动
安装 ZenML
首先,确保你已经安装了 Python 3.7 或更高版本。然后,使用以下命令安装 ZenML:
pip install zenml
克隆项目仓库
接下来,克隆 ZenML 项目仓库到本地:
git clone https://github.com/zenml-io/zenml-projects.git
cd zenml-projects
运行示例项目
选择一个你感兴趣的项目,例如 nba-pipeline
,进入项目目录并运行:
cd nba-pipeline
zenml init
zenml run
3、应用案例和最佳实践
NBA 三分球预测器
这个项目使用时间序列数据来预测 NBA 球员的三分球命中率。它展示了如何使用 ZenML 和各种集成(如 mlflow、kubeflow、evidently、sklearn 和 aws)来构建和部署 ML 管道。
客户满意度分析
该项目使用表格数据来分析客户满意度。它展示了如何使用 ZenML 和集成(如 mlflow 和 kubeflow)来处理和分析客户反馈数据。
YOLOv5 物体检测
这个项目使用计算机视觉技术来检测物体。它展示了如何使用 ZenML 和集成(如 mlflow 和 gcp)来训练和部署 YOLOv5 模型。
4、典型生态项目
ZenML 核心项目
ZenML 核心项目是一个可扩展的开源 MLOps 框架,适用于创建生产就绪的 ML 管道。它具有简单灵活的语法,云和工具无关,并且具有面向 ML 工作流的接口和抽象。
MLflow
MLflow 是一个开源平台,用于管理机器学习生命周期。它与 ZenML 集成,可以帮助用户跟踪实验、管理模型和部署模型。
Kubeflow
Kubeflow 是一个开源平台,用于在 Kubernetes 上运行机器学习工作流。它与 ZenML 集成,可以帮助用户在 Kubernetes 集群上部署和管理 ML 管道。
Evidently
Evidently 是一个开源工具,用于监控和分析 ML 模型的性能。它与 ZenML 集成,可以帮助用户实时监控模型的性能和数据漂移。