Beethoven 音高检测库使用教程
Beethoven :guitar: A maestro of pitch detection. 项目地址: https://gitcode.com/gh_mirrors/be/Beethoven
1. 项目介绍
Beethoven 是一个音频处理 Swift 库,它为解决音乐信号音高检测这一古老问题提供了一个易于使用的接口。该库的基本工作流程是从输入/输出源获取音频缓冲区,将其转换为适用于处理的格式,并应用一种音高估计算法来找到基频。对于最终用户来说,这归结为选择估计算法和实现委托方法。
Beethoven 被设计为灵活、可定制和高度可扩展。其主要目的是收集各种时间和频率域算法的 Swift 实现,用于单声部音高提取,具有不同的准确率和速度,以覆盖尽可能多的音高检测场景、乐器和人类声音。目前的实现可能并不完美,显然还有改进的余地。这意味着贡献是非常重要的,也非常受欢迎!
2. 项目快速启动
首先,确保你已经安装了最新版本的 Xcode 和必要的依赖项。
以下是一个简单的示例,展示了如何初始化和使用 Beethoven 库进行音高检测:
import Beethoven
// 创建一个配置,用于输入信号跟踪(默认)。
let config = Config(bufferSize: 4096, estimationStrategy: .yin)
// 初始化音高校准引擎。
let pitchEngine = PitchEngine(config: config)
// 设置委托来接收音高信息或错误。
pitchEngine.delegate = self
// 开始音高跟踪。
pitchEngine.start()
确保你的类遵循 PitchEngineDelegate
协议,并实现了以下方法来处理音高信息和错误:
extension YourClass: PitchEngineDelegate {
func pitchEngine(_ pitchEngine: PitchEngine, didReceivePitch pitch: Pitch) {
// 处理接收到的音高。
}
func pitchEngine(_ pitchEngine: PitchEngine, didReceiveError error: Error) {
// 处理发生的错误。
}
func pitchEngineWentBelowLevelThreshold(_ pitchEngine: PitchEngine) {
// 处理音量低于阈值的情况。
}
}
3. 应用案例和最佳实践
以下是一些使用 Beethoven 的应用案例和最佳实践:
- 实时音高检测:在你的应用中实现一个实时音高校准器,用于检测用户演奏的音符。
- 音频文件分析:分析音频文件中的音高变化,用于音乐教育或音频编辑工具。
- 声音识别:结合其他音频处理技术,实现声音识别或音乐识别功能。
4. 典型生态项目
目前,Beethoven 作为一个独立的库,并没有一个明确的生态项目。但是,你可以考虑以下几种方式来扩展 Beethoven 的功能和生态:
- 算法贡献:为 Beethoven 贡献新的音高估计算法,以提高库的准确性和性能。
- 集成其他库:将 Beethoven 与其他音频处理或音乐相关的 Swift 库集成,创建一个更完整的音乐处理生态系统。
- 教育工具:开发一款基于 Beethoven 的教育应用,用于音乐理论和实践的教学。
Beethoven :guitar: A maestro of pitch detection. 项目地址: https://gitcode.com/gh_mirrors/be/Beethoven