Apache Beam 项目使用教程

Apache Beam 项目使用教程

beamApache Beam is a unified programming model for Batch and Streaming data processing.项目地址:https://gitcode.com/gh_mirrors/beam15/beam

1. 项目的目录结构及介绍

Apache Beam 是一个用于定义和执行数据处理任务的开源统一编程模型。以下是 Apache Beam 项目的主要目录结构及其介绍:

apache-beam/
├── examples/          # 包含各种示例代码
├── sdks/              # 包含不同编程语言的 SDK
│   ├── java/          # Java SDK
│   ├── python/        # Python SDK
│   └── go/            # Go SDK
├── runners/           # 包含不同的执行引擎(Runner)
│   ├── direct-java/   # 本地直接执行引擎
│   ├── dataflow/      # Google Cloud Dataflow 执行引擎
│   └── spark/         # Apache Spark 执行引擎
├── model/             # 定义 Beam 模型的核心接口和类
├── pom.xml            # Maven 项目配置文件
└── README.md          # 项目介绍文档

2. 项目的启动文件介绍

在 Apache Beam 中,启动文件通常是指用于启动数据处理管道的代码文件。以下是一些常见的启动文件示例:

Java SDK

import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;

public class WordCount {
  public static void main(String[] args) {
    PipelineOptions options = PipelineOptionsFactory.fromArgs(args).create();
    Pipeline p = Pipeline.create(options);

    p.apply(new WordCountTransform())
     .apply(new WriteToText("output"));

    p.run().waitUntilFinish();
  }
}

Python SDK

import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions

class WordCount(beam.PTransform):
  def expand(self, pcoll):
    return (pcoll
            | 'Split' >> beam.FlatMap(lambda x: x.split(' '))
            | 'Count' >> beam.combiners.Count.PerElement())

def run():
  options = PipelineOptions()
  with beam.Pipeline(options=options) as p:
    (p
     | 'Read' >> beam.io.ReadFromText('input.txt')
     | 'Process' >> WordCount()
     | 'Write' >> beam.io.WriteToText('output.txt'))

if __name__ == '__main__':
  run()

3. 项目的配置文件介绍

在 Apache Beam 项目中,配置文件通常用于定义管道的运行选项和参数。以下是一些常见的配置文件示例:

Java SDK

public interface WordCountOptions extends PipelineOptions {
  @Description("Path of the file to read from")
  @Default.String("input.txt")
  String getInputFile();
  void setInputFile(String value);

  @Description("Path of the file to write to")
  @Default.String("output.txt")
  String getOutputFile();
  void setOutputFile(String value);
}

Python SDK

from apache_beam.options.pipeline_options import PipelineOptions

class WordCountOptions(PipelineOptions):
  @classmethod
  def _add_argparse_args(cls, parser):
    parser.add_argument(
        '--input',
        dest='input',
        default='input.txt',
        help='Input file to process.')
    parser.add_argument(
        '--output',
        dest='output',
        default='output.txt',
        help='Output file to write results to.')

以上是 Apache Beam 项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些内容能帮助你更好地理解和使用 Apache Beam。

beamApache Beam is a unified programming model for Batch and Streaming data processing.项目地址:https://gitcode.com/gh_mirrors/beam15/beam

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尚学红Vandal

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值