Apache Beam 项目使用教程
1. 项目的目录结构及介绍
Apache Beam 是一个用于定义和执行数据处理任务的开源统一编程模型。以下是 Apache Beam 项目的主要目录结构及其介绍:
apache-beam/
├── examples/ # 包含各种示例代码
├── sdks/ # 包含不同编程语言的 SDK
│ ├── java/ # Java SDK
│ ├── python/ # Python SDK
│ └── go/ # Go SDK
├── runners/ # 包含不同的执行引擎(Runner)
│ ├── direct-java/ # 本地直接执行引擎
│ ├── dataflow/ # Google Cloud Dataflow 执行引擎
│ └── spark/ # Apache Spark 执行引擎
├── model/ # 定义 Beam 模型的核心接口和类
├── pom.xml # Maven 项目配置文件
└── README.md # 项目介绍文档
2. 项目的启动文件介绍
在 Apache Beam 中,启动文件通常是指用于启动数据处理管道的代码文件。以下是一些常见的启动文件示例:
Java SDK
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
public class WordCount {
public static void main(String[] args) {
PipelineOptions options = PipelineOptionsFactory.fromArgs(args).create();
Pipeline p = Pipeline.create(options);
p.apply(new WordCountTransform())
.apply(new WriteToText("output"));
p.run().waitUntilFinish();
}
}
Python SDK
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
class WordCount(beam.PTransform):
def expand(self, pcoll):
return (pcoll
| 'Split' >> beam.FlatMap(lambda x: x.split(' '))
| 'Count' >> beam.combiners.Count.PerElement())
def run():
options = PipelineOptions()
with beam.Pipeline(options=options) as p:
(p
| 'Read' >> beam.io.ReadFromText('input.txt')
| 'Process' >> WordCount()
| 'Write' >> beam.io.WriteToText('output.txt'))
if __name__ == '__main__':
run()
3. 项目的配置文件介绍
在 Apache Beam 项目中,配置文件通常用于定义管道的运行选项和参数。以下是一些常见的配置文件示例:
Java SDK
public interface WordCountOptions extends PipelineOptions {
@Description("Path of the file to read from")
@Default.String("input.txt")
String getInputFile();
void setInputFile(String value);
@Description("Path of the file to write to")
@Default.String("output.txt")
String getOutputFile();
void setOutputFile(String value);
}
Python SDK
from apache_beam.options.pipeline_options import PipelineOptions
class WordCountOptions(PipelineOptions):
@classmethod
def _add_argparse_args(cls, parser):
parser.add_argument(
'--input',
dest='input',
default='input.txt',
help='Input file to process.')
parser.add_argument(
'--output',
dest='output',
default='output.txt',
help='Output file to write results to.')
以上是 Apache Beam 项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些内容能帮助你更好地理解和使用 Apache Beam。