NebulaGraph AI Suite 使用教程
1. 项目介绍
NebulaGraph AI Suite(ng_ai)是一个强大的Python库,旨在为数据科学家提供高效的API,以便在NebulaGraph中进行数据的读取、写入、分析和计算。通过支持单机引擎(如NetworkX)或分布式计算环境(如Spark),ng_ai能够在不到10行代码的情况下,在NebulaGraph上执行图分析和算法,并提供统一且直观的API。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了Python环境。然后,通过pip安装ng_ai库:
pip install ng_ai
2.2 快速启动示例
以下是一个简单的示例,展示如何在NebulaGraph上运行PageRank算法:
from ng_ai import NebulaReader
# 使用Spark引擎读取数据(扫描模式)
reader = NebulaReader(engine="spark")
reader.scan(edge="follow", props="degree")
df = reader.read()
# 运行PageRank算法
pr_result = df.algo.pagerank(reset_prob=0.15, max_iter=10)
# 将结果写回NebulaGraph
from ng_ai import NebulaWriter
from ng_ai.config import NebulaGraphConfig
config = NebulaGraphConfig()
properties = ["louvain": "cluster_id"]
writer = NebulaWriter(data=df_result, sink="nebulagraph_vertex", config=config, engine="spark")
writer.set_options(tag="louvain", vid_field="_id", properties=properties, batch_size=256, write_mode="insert")
writer.write()
# 查询结果
# MATCH (v:louvain) RETURN id(v), v.louvain.cluster_id LIMIT 10
3. 应用案例和最佳实践
3.1 医疗行业
在医疗行业中,NebulaGraph AI Suite可以帮助构建特定领域的知识图谱,例如疾病、药物和治疗方案之间的关系。通过这些知识图谱,大型语言模型可以获取广泛的医疗知识,并应用于智能诊断、疾病预测和个性化医疗推荐。
3.2 金融行业
在金融领域,NebulaGraph AI Suite可以用于构建金融知识图谱,模型金融实体(如股票、交易、财务指标)及其关系。基于这些知识图谱,语言模型可以获取专业的金融知识,并应用于金融数据分析、投资决策等。
3.3 电商零售行业
在零售行业,NebulaGraph AI Suite可以帮助构建零售行业的知识图谱,模型产品、品牌、用户及其关系。特定领域的大型语言模型可以应用于智能产品推荐、客户细分、市场趋势分析等,提供更智能和个性化的购物体验。
4. 典型生态项目
4.1 NebulaGraph
NebulaGraph是一个开源的分布式图数据库,专为超大规模图设计,具有毫秒级的延迟。NebulaGraph AI Suite在其之上提供了高级API,使得在NebulaGraph上运行图算法变得更加简单和高效。
4.2 Spark
Spark是一个开源的分布式计算框架,广泛用于大数据处理。NebulaGraph AI Suite支持在Spark上运行图算法,利用其强大的分布式计算能力,处理大规模图数据。
4.3 NetworkX
NetworkX是一个用于创建、操作和研究复杂网络结构的Python库。NebulaGraph AI Suite支持在单机环境下使用NetworkX进行图分析,适用于小规模图数据的处理。
通过以上模块的介绍和示例,您可以快速上手NebulaGraph AI Suite,并在实际项目中应用其强大的图分析能力。