MultiBench 项目教程
项目地址:https://gitcode.com/gh_mirrors/mu/MultiBench
1. 项目目录结构及介绍
MultiBench 项目的目录结构如下:
MultiBench/
├── datasets/
│ ├── affect/
│ ├── avmnist/
│ ├── deprecated/
│ ├── ...
├── eval_scripts/
├── examples/
├── fusions/
├── images/
├── objective_functions/
├── pretrained/
├── private_test_scripts/
├── robustness/
├── special/
├── sphinx/
├── tests/
├── training_structures/
├── unimodals/
├── utils/
├── .gitignore
├── LICENSE
├── README.md
├── __init__.py
├── coverage.xml
├── environment.yml
├── requirements.txt
└── tutorial.md
目录介绍
- datasets/: 包含各种数据集的处理脚本,每个子目录对应一个特定的数据集。
- eval_scripts/: 包含模型评估的脚本。
- examples/: 包含示例训练脚本,展示了如何使用 MultiBench 进行训练。
- fusions/: 包含多模态融合方法的实现。
- images/: 包含项目相关的图像文件。
- objective_functions/: 包含各种优化目标函数的实现。
- pretrained/: 包含预训练模型的相关文件。
- private_test_scripts/: 包含私有测试脚本。
- robustness/: 包含鲁棒性测试的相关脚本。
- special/: 包含特殊功能的实现。
- sphinx/: 包含 Sphinx 文档生成工具的配置文件。
- tests/: 包含测试脚本。
- training_structures/: 包含不同的训练结构的实现。
- unimodals/: 包含单模态模型的实现。
- utils/: 包含各种实用工具函数。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- init.py: Python 包初始化文件。
- coverage.xml: 代码覆盖率报告文件。
- environment.yml: Conda 环境配置文件。
- requirements.txt: Python 依赖包列表。
- tutorial.md: 项目教程文件。
2. 项目启动文件介绍
MultiBench 项目的启动文件主要是 examples/
目录下的示例训练脚本。这些脚本展示了如何使用 MultiBench 进行训练。例如:
examples/affect/train_affect.py
: 用于训练情感计算数据集的示例脚本。examples/multimodal/train_multimodal.py
: 用于训练多模态数据集的示例脚本。
这些脚本通常会调用 datasets/
目录下的数据加载函数,并使用 training_structures/
目录下的训练结构进行模型训练。
3. 项目的配置文件介绍
MultiBench 项目的配置文件主要包括以下几个:
- environment.yml: 用于配置 Conda 环境的文件,包含了项目所需的所有依赖包。
- requirements.txt: 包含了项目所需的 Python 依赖包列表。
- tutorial.md: 项目教程文件,包含了项目的详细使用说明和示例。
这些配置文件帮助用户快速搭建项目运行环境,并提供了详细的教程和示例,方便用户理解和使用 MultiBench 项目。