ADetailer 自动检测遮罩与填充教程

ADetailer 自动检测遮罩与填充教程

adetailerAuto detecting, masking and inpainting with detection model.项目地址:https://gitcode.com/gh_mirrors/ad/adetailer


项目介绍

ADetailer 是一款专为 Stable Diffusion WebUI 设计的扩展插件,它提供了自动掩模和内填充功能,类似于 Detection Detailer。该工具利用了两个基于 AGPL 许可证的作品——stable-diffusion-webui 和 ultralytics,因此自身也遵循 AGPL-3.0 开源协议。ADetailer 适用于需要精准图像处理的场景,尤其是对于 2D 图像中的面部、手部及人物进行自动化处理。

项目快速启动

安装步骤

  1. 直接安装方法: 用户可以直接通过 Stable Diffusion WebUI 的“Extensions”标签页安装 ADetailer。

  2. 手动安装: 对于喜欢手动操作的开发者或用户,可以执行以下步骤:

    • 确保你的环境已经配置了 Stable Diffusion WebUI。
    • 克隆 ADetailer 仓库到你的本地或 WebUI 的扩展目录中。
    git clone https://github.com/Bing-su/adetailer.git
    
    • 在 Stable Diffusion WebUI 中启用该扩展。

配置与使用示例

在启用后,ADetailer 将出现在 WebUI 相应界面。你可以通过设置检测模型来调整参数,比如选择 face_yolov8s.pt 来获得更精确的人脸检测。高级用户可通过自定义 API 请求进一步定制行为。

# 示例配置片段(非完整配置)
model: face_yolov8s.pt

应用案例与最佳实践

案例一:实时人脸遮罩处理

在处理个人照片或视频时,ADetailer 可以快速识别并自动创建人脸的精确遮罩,这对于隐私保护或创意编辑非常有用。

最佳实践

  • 预训练模型选择:根据具体需求选择最适合的检测模型,例如处理现实生活中的人物图片时,推荐使用 person_yolov8s-seg.pt 模型,因为它在人体检测和分割上表现更优。
  • 微调与适应:考虑特定应用场景下的模型微调,以提高精度和适用性。

典型生态项目

ADetailer 是稳定扩散生态系统的一部分,与之相辅相成的项目包括但不限于:

  • sd-face-editor: 用于脸部的详细编辑。
  • sd-webui-segment-anything: 提供更加灵活的任意区域分割功能。
  • sd-webui-bmab: 另一个与对象检测和masking相关的插件,提供了不同的技术路径和特性。

这些项目共同丰富了 Stable Diffusion 的能力,允许创作者实现更多复杂的图像处理任务。


本教程旨在快速引导您入门ADetailer,深入使用时建议参考其官方文档和社区讨论,以获取最新信息和技术细节。

adetailerAuto detecting, masking and inpainting with detection model.项目地址:https://gitcode.com/gh_mirrors/ad/adetailer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

史霁蔷Primrose

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值