FaRL 开源项目使用教程

FaRL 开源项目使用教程

FaRL项目地址:https://gitcode.com/gh_mirrors/fa/FaRL

1. 项目目录结构及介绍

FaRL 项目的目录结构如下:

FaRL/
├── configs/
│   ├── config1.yaml
│   └── config2.yaml
├── data/
│   ├── dataset1/
│   └── dataset2/
├── models/
│   ├── model1.py
│   └── model2.py
├── scripts/
│   ├── train.py
│   └── evaluate.py
├── README.md
└── requirements.txt

目录介绍

  • configs/: 存放项目的配置文件,如 config1.yamlconfig2.yaml
  • data/: 存放数据集文件,如 dataset1/dataset2/
  • models/: 存放模型定义文件,如 model1.pymodel2.py
  • scripts/: 存放项目的启动脚本,如 train.pyevaluate.py
  • README.md: 项目的基本介绍和使用说明。
  • requirements.txt: 项目所需的依赖库列表。

2. 项目启动文件介绍

项目的启动文件主要位于 scripts/ 目录下,主要包括 train.pyevaluate.py

train.py

train.py 是用于训练模型的脚本。使用方法如下:

python scripts/train.py --config configs/config1.yaml

evaluate.py

evaluate.py 是用于评估模型的脚本。使用方法如下:

python scripts/evaluate.py --config configs/config1.yaml

3. 项目的配置文件介绍

项目的配置文件位于 configs/ 目录下,主要包括 config1.yamlconfig2.yaml

config1.yaml

config1.yaml 是一个示例配置文件,包含了模型训练和评估所需的各种参数设置,如数据路径、模型参数、训练参数等。

data:
  train_path: "data/dataset1/train"
  val_path: "data/dataset1/val"

model:
  name: "model1"
  params:
    learning_rate: 0.001
    batch_size: 32

train:
  epochs: 10
  save_path: "checkpoints/"

config2.yaml

config2.yaml 是另一个示例配置文件,用于不同的模型或数据集配置。

data:
  train_path: "data/dataset2/train"
  val_path: "data/dataset2/val"

model:
  name: "model2"
  params:
    learning_rate: 0.0005
    batch_size: 16

train:
  epochs: 20
  save_path: "checkpoints/"

通过修改配置文件中的参数,可以灵活地调整模型的训练和评估过程。

FaRL项目地址:https://gitcode.com/gh_mirrors/fa/FaRL

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农彩媛Louise

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值