FaRL 开源项目使用教程
FaRL项目地址:https://gitcode.com/gh_mirrors/fa/FaRL
1. 项目目录结构及介绍
FaRL 项目的目录结构如下:
FaRL/
├── configs/
│ ├── config1.yaml
│ └── config2.yaml
├── data/
│ ├── dataset1/
│ └── dataset2/
├── models/
│ ├── model1.py
│ └── model2.py
├── scripts/
│ ├── train.py
│ └── evaluate.py
├── README.md
└── requirements.txt
目录介绍
- configs/: 存放项目的配置文件,如
config1.yaml
和config2.yaml
。 - data/: 存放数据集文件,如
dataset1/
和dataset2/
。 - models/: 存放模型定义文件,如
model1.py
和model2.py
。 - scripts/: 存放项目的启动脚本,如
train.py
和evaluate.py
。 - README.md: 项目的基本介绍和使用说明。
- requirements.txt: 项目所需的依赖库列表。
2. 项目启动文件介绍
项目的启动文件主要位于 scripts/
目录下,主要包括 train.py
和 evaluate.py
。
train.py
train.py
是用于训练模型的脚本。使用方法如下:
python scripts/train.py --config configs/config1.yaml
evaluate.py
evaluate.py
是用于评估模型的脚本。使用方法如下:
python scripts/evaluate.py --config configs/config1.yaml
3. 项目的配置文件介绍
项目的配置文件位于 configs/
目录下,主要包括 config1.yaml
和 config2.yaml
。
config1.yaml
config1.yaml
是一个示例配置文件,包含了模型训练和评估所需的各种参数设置,如数据路径、模型参数、训练参数等。
data:
train_path: "data/dataset1/train"
val_path: "data/dataset1/val"
model:
name: "model1"
params:
learning_rate: 0.001
batch_size: 32
train:
epochs: 10
save_path: "checkpoints/"
config2.yaml
config2.yaml
是另一个示例配置文件,用于不同的模型或数据集配置。
data:
train_path: "data/dataset2/train"
val_path: "data/dataset2/val"
model:
name: "model2"
params:
learning_rate: 0.0005
batch_size: 16
train:
epochs: 20
save_path: "checkpoints/"
通过修改配置文件中的参数,可以灵活地调整模型的训练和评估过程。