开源项目推荐:联邦学习模块化框架

开源项目推荐:联邦学习模块化框架

async-FL 一个万用联邦学习框架,自由切换线程和进程模式。A universal federated learning framework, free to switch thread and process modes async-FL 项目地址: https://gitcode.com/gh_mirrors/as/async-FL

联邦学习是一种新兴的机器学习设置,旨在在分布式设备上进行模型训练,同时保护数据隐私。今天,我要推荐的是一个联邦学习模块化框架——async-FL。

1. 项目基础介绍及主要编程语言

async-FL 是一个开源的联邦学习模块化框架,它旨在为研究人员和开发者提供一个灵活、可扩展的联邦学习平台。该框架支持多种联邦学习范式,包括同步、异步、半异步和个人化联邦学习。它允许用户轻松切换不同的操作模式,如线程、进程、时间片和分布式。项目的主要编程语言是 Python,同时也使用了一些 Dockerfile 来支持容器化部署。

2. 项目的核心功能

  • 支持多种操作模式:async-FL 可以在多种操作模式下运行,包括线程、进程、时间片和分布式模式,为不同的实验需求提供了极大的灵活性。
  • 模块化设计:框架设计为模块化,支持轻松添加新的联邦学习算法或替换现有的组件,如模型、数据集、调度算法、聚合算法和损失函数。
  • 可视化与数据同步:集成了 wandb 可视化工具,可以同步实验数据到云端,避免数据丢失,同时方便跟踪实验进展。
  • 易于部署:支持 Docker 部署,可以轻松地拉取和运行 Docker 镜像,简化了部署过程。

3. 项目最近更新的功能

  • 改进的内存管理:针对原有框架中存在的内存泄漏问题进行了修复,优化了 CUDA 张量的处理方式,避免了因内存泄漏导致的程序崩溃。
  • 新增算法支持:框架持续更新,增加了更多的联邦学习算法实现,用户可以通过查阅项目维基页面获取最新支持的算法列表。
  • 增强的文档和示例:更新了项目文档和示例配置文件,使得新手用户更容易上手和配置自己的联邦学习实验。

async-FL 作为一个联邦学习的模块化框架,不仅提供了强大的功能和灵活性,而且社区活跃,持续更新,是联邦学习领域的一个优秀开源项目。

async-FL 一个万用联邦学习框架,自由切换线程和进程模式。A universal federated learning framework, free to switch thread and process modes async-FL 项目地址: https://gitcode.com/gh_mirrors/as/async-FL

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伍畅晗Praised

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值