AI-Serving 使用教程
1、项目介绍
AI-Serving 是一个灵活、高性能的推理系统,专为机器学习和深度学习模型设计,适用于生产环境。它提供了与 PMML 和 ONNX 模型的开箱即用集成,并且可以轻松扩展以服务其他格式的模型。AI-Serving 支持 HTTP (REST API) 和 gRPC 端点,使得部署和管理 AI/ML 模型变得简单高效。
2、项目快速启动
安装
使用 Docker 是最简单直接的方式来安装 AI-Serving:
docker pull autodeployai/ai-serving:latest
docker run -d -p 9090:9090 -p 9091:9091 autodeployai/ai-serving:latest
验证安装
安装完成后,可以通过以下命令验证服务是否正常运行:
curl http://localhost:9090/health
3、应用案例和最佳实践
使用 PMML 模型
假设我们有一个 PMML 模型文件 single_iris_dectree.xml
,可以通过以下步骤进行部署和使用:
-
上传模型:
curl -X PUT --data-binary @single_iris_dectree.xml -H "Content-Type: application/xml" http://localhost:9090/models/iris_model
-
预测:
curl -X POST -H "Content-Type: application/json" -d '{"input": [5.1, 3.5, 1.4, 0.2]}' http://localhost:9090/models/iris_model/predict
使用 ONNX 模型
假设我们有一个 ONNX 模型文件 model.onnx
,可以通过以下步骤进行部署和使用:
-
上传模型:
curl -X PUT --data-binary @model.onnx -H "Content-Type: application/octet-stream" http://localhost:9090/models/onnx_model
-
预测:
curl -X POST -H "Content-Type: application/json" -d '{"input": [5.1, 3.5, 1.4, 0.2]}' http://localhost:9090/models/onnx_model/predict
4、典型生态项目
Kubernetes 部署
AI-Serving 可以轻松部署在 Kubernetes 上,实现大规模的 AI/ML 模型部署和管理。以下是一个简单的 Kubernetes 部署示例:
apiVersion: apps/v1
kind: Deployment
metadata:
name: ai-serving
spec:
replicas: 3
selector:
matchLabels:
app: ai-serving
template:
metadata:
labels:
app: ai-serving
spec:
containers:
- name: ai-serving
image: autodeployai/ai-serving:latest
ports:
- containerPort: 9090
- containerPort: 9091
通过以上步骤,您可以快速上手并使用 AI-Serving 进行 AI/ML 模型的部署和管理。