AI-Serving 使用教程

AI-Serving 使用教程

ai-servingServing AI/ML models in the open standard formats PMML and ONNX with both HTTP (REST API) and gRPC endpoints项目地址:https://gitcode.com/gh_mirrors/ai/ai-serving

1、项目介绍

AI-Serving 是一个灵活、高性能的推理系统,专为机器学习和深度学习模型设计,适用于生产环境。它提供了与 PMML 和 ONNX 模型的开箱即用集成,并且可以轻松扩展以服务其他格式的模型。AI-Serving 支持 HTTP (REST API) 和 gRPC 端点,使得部署和管理 AI/ML 模型变得简单高效。

2、项目快速启动

安装

使用 Docker 是最简单直接的方式来安装 AI-Serving:

docker pull autodeployai/ai-serving:latest
docker run -d -p 9090:9090 -p 9091:9091 autodeployai/ai-serving:latest

验证安装

安装完成后,可以通过以下命令验证服务是否正常运行:

curl http://localhost:9090/health

3、应用案例和最佳实践

使用 PMML 模型

假设我们有一个 PMML 模型文件 single_iris_dectree.xml,可以通过以下步骤进行部署和使用:

  1. 上传模型

    curl -X PUT --data-binary @single_iris_dectree.xml -H "Content-Type: application/xml" http://localhost:9090/models/iris_model
    
  2. 预测

    curl -X POST -H "Content-Type: application/json" -d '{"input": [5.1, 3.5, 1.4, 0.2]}' http://localhost:9090/models/iris_model/predict
    

使用 ONNX 模型

假设我们有一个 ONNX 模型文件 model.onnx,可以通过以下步骤进行部署和使用:

  1. 上传模型

    curl -X PUT --data-binary @model.onnx -H "Content-Type: application/octet-stream" http://localhost:9090/models/onnx_model
    
  2. 预测

    curl -X POST -H "Content-Type: application/json" -d '{"input": [5.1, 3.5, 1.4, 0.2]}' http://localhost:9090/models/onnx_model/predict
    

4、典型生态项目

Kubernetes 部署

AI-Serving 可以轻松部署在 Kubernetes 上,实现大规模的 AI/ML 模型部署和管理。以下是一个简单的 Kubernetes 部署示例:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: ai-serving
spec:
  replicas: 3
  selector:
    matchLabels:
      app: ai-serving
  template:
    metadata:
      labels:
        app: ai-serving
    spec:
      containers:
      - name: ai-serving
        image: autodeployai/ai-serving:latest
        ports:
        - containerPort: 9090
        - containerPort: 9091

通过以上步骤,您可以快速上手并使用 AI-Serving 进行 AI/ML 模型的部署和管理。

ai-servingServing AI/ML models in the open standard formats PMML and ONNX with both HTTP (REST API) and gRPC endpoints项目地址:https://gitcode.com/gh_mirrors/ai/ai-serving

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

费好曦Lucia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值