使用计算机视觉/3D建模进行人体测量——开源项目推荐

使用计算机视觉/3D建模进行人体测量——开源项目推荐

Human-Body-Measurements-using-Computer-Vision Anthropometric measurement extraction using single image Human-Body-Measurements-using-Computer-Vision 项目地址: https://gitcode.com/gh_mirrors/hu/Human-Body-Measurements-using-Computer-Vision

项目介绍

在现代科技飞速发展的今天,如何通过图像获取精确的人体测量数据一直是一个难题。今天,我们为大家推荐一个基于计算机视觉和3D建模技术的开源项目——Human Body Measurement using Computer Vision/3D Modeling。该项目能够通过单张人体图像,提取关键点并构建3D模型,从而精确测量人体各部位的尺寸,如手臂长度、腰围和臀宽等。

项目示例图片

项目技术分析

该项目基于强大的OpenCV和Tensorflow库,利用这些库提供的图像处理、特征检测和3D重建工具,实现了从单张图像到3D模型的转换。具体技术流程如下:

  1. 图像输入:系统接受单张人体图像作为输入。
  2. 关键点提取:通过OpenCV和Tensorflow进行处理,提取人体关键点。
  3. 3D模型构建:利用提取的关键点,通过HMR技术进行3D重建。
  4. 尺寸测量:在3D模型基础上,精确测量人体各部位的尺寸。

项目及技术应用场景

该项目的应用场景非常广泛,包括但不限于:

  • 服装定制:通过精确的人体测量数据,提供个性化的服装定制服务。
  • 健康管理:监测人体尺寸变化,辅助健康管理和体型评估。
  • 虚拟试衣:结合虚拟现实技术,实现更真实的试衣体验。
  • 体育训练:帮助运动员进行身体数据监测,优化训练计划。

项目特点

  • 高精度测量:基于3D建模技术,提供厘米级的测量精度。
  • 易于使用:提供Jupyter Notebook快速演示,用户只需更改图像路径即可进行推理。
  • 开源免费:项目完全开源,用户可自由使用和修改。
  • 丰富的依赖支持:通过requirements.txt文件,一键安装所有依赖包。
  • 预训练模型:提供预训练模型下载,用户可快速上手。

快速上手指南

  1. 下载预训练模型
wget https://people.eecs.berkeley.edu/~kanazawa/cachedir/hmr/models.tar.gz && tar -xf models.tar.gz

将解压后的文件保存至models文件夹。

  1. 下载CustomBodyPoints文件

下载CustomBodyPoints文件,放置于data文件夹。

  1. 安装依赖包
pip install -r requirements.txt

pip3 install -r requirements.txt
  1. 运行推理
python3 inference.py -i <path to Image1> -ht <height in cm>

结语

Human Body Measurement using Computer Vision/3D Modeling项目为人体测量领域提供了一个强大的开源解决方案。无论是开发者还是研究者,都能从中受益。欢迎大家访问项目GitHub页面了解更多详情,并积极参与项目贡献。

项目示例图片

项目示例图片

感谢项目作者Faraz Bhatti及其团队的努力,也感谢所有贡献者和支持者。让我们一起推动科技的发展,创造更多可能!🚀

Human-Body-Measurements-using-Computer-Vision Anthropometric measurement extraction using single image Human-Body-Measurements-using-Computer-Vision 项目地址: https://gitcode.com/gh_mirrors/hu/Human-Body-Measurements-using-Computer-Vision

### 手机照片实景三维建模软件推荐 目前市面上存在多种支持通过手机拍摄的照片进行实景三维建模的软件,这些工具大多利用先进的计算机视觉算法和云计算能力来实现高效的三维重建。以下是几款适合移动端使用的实景三维建模软件: #### 1. **RealityCapture** RealityCapture 是一款功能强大的三维建模软件,其核心特点在于能够从图像或激光扫描中创建高精度的实景三维模型和正射影像[^1]。尽管该软件主要面向桌面端用户设计,但它也兼容移动设备上传的照片文件,因此可以通过手机拍摄图片并导入到 RealityCapture 中完成建模。 #### 2. **大疆智图 (DJI Terra)** 大疆智图不仅适用于无人机采集的数据处理,还支持基于地面摄影测量的方式生成高质量的二维正射影像与三维模型[^2]。如果用户的智能手机具备较高的摄像头分辨率,则可以直接使用手机拍摄的照片作为输入源,在大疆智图平台上构建精细的三维场景。 #### 3. **Pix4D Capture & Pix4Dmodel** Pix4D 提供了一整套从数据获取到后期处理的服务体系,其中 Pix4D Capture 应用程序专为 iOS 和 Android 平台开发,允许用户轻松规划飞行路径或者手动拍照;随后借助 Pix4Dmodel 可快速转换成逼真的三维成果物。整个流程简单直观,非常适合初学者尝试操作。 #### 4. **Meshroom by AliceVision** AliceVision开源项目 Meshroom 提供了一个易于使用的界面来进行 SfM(Structure from Motion)计算以及纹理映射等工作流阶段。虽然它本身是一个跨平台应用程序而非专门针对移动终端优化的产品,但由于支持命令行模式运行以及 API 接口调用等功能特性,开发者完全可以将其集成至自定义解决方案当中去适配各类硬件环境下的需求[^3]。 #### 5. **Colmap** 对于那些希望深入研究背后原理并对现有框架做出改进的技术爱好者来说,Google 开发维护的 Colmap 或许会成为不错的选择之一。这款免费开源库专注于解决大规模多视角立体匹配难题,并且已经证明能够在合理时间内产出令人满意的恢复效果。即使是在资源受限条件下也能表现出色——这意味着即便只依赖于普通消费级数码产品所记录下来的素材集也同样有机会获得较为理想的输出质量。 此外值得注意的是,为了提高整体工作效率还可以考虑引入专业的存储管理方案如曙光实景三维数据存储解决方案等辅助措施来保障各个环节顺畅衔接的同时最大化发挥软硬件潜力[^4]^。 最后不得不提的一点就是经济因素考量方面的影响作用不可忽略不计。相比于传统手工绘制方法而言采用自动化手段确实可以在一定程度上削减开支成本但具体节约幅度还需视实际情况而定[^5]^. ```python import os from PIL import Image def load_images_from_directory(directory_path): images = [] supported_extensions = ['.jpg', '.jpeg', '.png'] for filename in os.listdir(directory_path): ext = os.path.splitext(filename)[1].lower() if ext in supported_extensions: img_path = os.path.join(directory_path, filename) with Image.open(img_path) as img: images.append(img) return images ``` 上述代码片段展示了如何加载指定目录中的所有支持扩展名的图像文件列表以便后续传递给选定的三维建模工具进行进一步分析加工过程演示示例而已并非实际生产环境中推荐做法因为缺乏错误检测机制等问题尚未妥善解决前不宜贸然投入使用场合之中。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薄垚宝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值