使用计算机视觉/3D建模进行人体测量——开源项目推荐
项目介绍
在现代科技飞速发展的今天,如何通过图像获取精确的人体测量数据一直是一个难题。今天,我们为大家推荐一个基于计算机视觉和3D建模技术的开源项目——Human Body Measurement using Computer Vision/3D Modeling。该项目能够通过单张人体图像,提取关键点并构建3D模型,从而精确测量人体各部位的尺寸,如手臂长度、腰围和臀宽等。
项目技术分析
该项目基于强大的OpenCV和Tensorflow库,利用这些库提供的图像处理、特征检测和3D重建工具,实现了从单张图像到3D模型的转换。具体技术流程如下:
- 图像输入:系统接受单张人体图像作为输入。
- 关键点提取:通过OpenCV和Tensorflow进行处理,提取人体关键点。
- 3D模型构建:利用提取的关键点,通过HMR技术进行3D重建。
- 尺寸测量:在3D模型基础上,精确测量人体各部位的尺寸。
项目及技术应用场景
该项目的应用场景非常广泛,包括但不限于:
- 服装定制:通过精确的人体测量数据,提供个性化的服装定制服务。
- 健康管理:监测人体尺寸变化,辅助健康管理和体型评估。
- 虚拟试衣:结合虚拟现实技术,实现更真实的试衣体验。
- 体育训练:帮助运动员进行身体数据监测,优化训练计划。
项目特点
- 高精度测量:基于3D建模技术,提供厘米级的测量精度。
- 易于使用:提供Jupyter Notebook快速演示,用户只需更改图像路径即可进行推理。
- 开源免费:项目完全开源,用户可自由使用和修改。
- 丰富的依赖支持:通过
requirements.txt
文件,一键安装所有依赖包。 - 预训练模型:提供预训练模型下载,用户可快速上手。
快速上手指南
- 下载预训练模型:
wget https://people.eecs.berkeley.edu/~kanazawa/cachedir/hmr/models.tar.gz && tar -xf models.tar.gz
将解压后的文件保存至models
文件夹。
- 下载CustomBodyPoints文件:
下载CustomBodyPoints文件,放置于data
文件夹。
- 安装依赖包:
pip install -r requirements.txt
或
pip3 install -r requirements.txt
- 运行推理:
python3 inference.py -i <path to Image1> -ht <height in cm>
结语
Human Body Measurement using Computer Vision/3D Modeling项目为人体测量领域提供了一个强大的开源解决方案。无论是开发者还是研究者,都能从中受益。欢迎大家访问项目GitHub页面了解更多详情,并积极参与项目贡献。
感谢项目作者Faraz Bhatti及其团队的努力,也感谢所有贡献者和支持者。让我们一起推动科技的发展,创造更多可能!🚀