OSMnx 入门指南及最佳实践
osmnx-examples项目地址:https://gitcode.com/gh_mirrors/os/osmnx-examples
1. 项目介绍
OSMnx 是一个 Python 包,用于方便地从 OpenStreetMap 下载、建模、分析和可视化城市街道网络和其他地理空间特征。只需一行代码,你就能下载步行、驾驶或骑行网络数据,随后进行分析并绘制地图。此外,OSMnx 还支持处理城市设施、建筑、公交站、海拔数据、道路方向、出行速度和路径规划。
2. 项目快速启动
安装
确保你已经安装了 Python 和 Anaconda,然后在命令行中运行以下命令来安装 OSMnx:
conda create --name osmnx python=3.9
conda activate osmnx
pip install osmnx
第一个示例
下面是一个简单的例子,演示如何下载和绘制加利福尼亚州伯克利市的街路网络:
import osmnx as ox
# 定位到伯克利
place = 'Berkeley, California'
# 使用 OSMnx 下载地理数据
G = ox.graph_from_place(place)
# 绘制街路网络图
ox.plot_graph(G)
上述代码将显示伯克利的街路网络图。
3. 应用案例和最佳实践
案例1:获取城市区域内的POI
# 获取特定范围的点兴趣(POIs)
place = "Berkeley, California"
G_poi = ox.pois_from_place(place)
最佳实践:利用缓存优化性能
由于 OSM 数据下载可能较慢,建议保存下载的数据以供后续使用:
# 保存图形数据
ox.save_graph_shapefile(G, filename='berkeley')
# 加载已保存的数据
GReloaded = ox.load_graph_shapefile('berkeley')
4. 典型生态项目
OSMnx 与其他生态项目的集成使得它成为强大的工具链一部分:
- GeoPandas: 处理地理空间数据,与 OSMnx 结合,可以实现更复杂的地理空间操作。
- networkx: OSMnx 建立在网络x基础之上,可利用其算法进行复杂网络分析。
- matplotlib 和 plotly: 可视化工具,用于创建交互式地图和静态图表。
通过这些库的组合,你可以构建出强大的地理空间分析和可视化解决策略。
查阅 OSMnx 文档 获取更多详细信息、示例和API参考。
osmnx-examples项目地址:https://gitcode.com/gh_mirrors/os/osmnx-examples