DeepSpeech 项目使用教程
deepspeechDeepSpeech neon implementation项目地址:https://gitcode.com/gh_mirrors/dee/deepspeech
1. 项目的目录结构及介绍
DeepSpeech 项目的目录结构如下:
deepspeech/
├── LICENSE
├── README.md
├── setup.py
├── deepspeech/
│ ├── __init__.py
│ ├── model.py
│ ├── decoder.py
│ ├── evaluate.py
│ ├── train.py
│ ├── util.py
│ └── ...
├── data/
│ ├── README.md
│ ├── alphabet.txt
│ ├── lm.binary
│ └── ...
├── scripts/
│ ├── run-ldc93s1.sh
│ ├── run-benchmark.sh
│ └── ...
└── ...
目录介绍
deepspeech/
: 包含项目的主要代码文件,如模型定义、训练脚本、评估脚本等。data/
: 包含项目所需的数据文件,如字母表文件、语言模型文件等。scripts/
: 包含一些辅助脚本,如运行示例数据集的脚本、性能测试脚本等。
2. 项目的启动文件介绍
项目的启动文件主要是 deepspeech/train.py
和 deepspeech/evaluate.py
。
train.py
train.py
文件用于训练 DeepSpeech 模型。可以通过命令行参数指定训练数据、模型保存路径等。
python deepspeech/train.py --data_dir=/path/to/data --save_dir=/path/to/save
evaluate.py
evaluate.py
文件用于评估训练好的 DeepSpeech 模型。可以通过命令行参数指定评估数据、模型路径等。
python deepspeech/evaluate.py --data_dir=/path/to/data --model_path=/path/to/model
3. 项目的配置文件介绍
项目的配置文件主要是 data/alphabet.txt
和 data/lm.binary
。
alphabet.txt
alphabet.txt
文件定义了 DeepSpeech 模型支持的字符集。每一行代表一个字符。
lm.binary
lm.binary
文件是语言模型文件,用于提高语音识别的准确性。语言模型可以通过训练数据生成。
以上是 DeepSpeech 项目的基本使用教程,包括项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助。
deepspeechDeepSpeech neon implementation项目地址:https://gitcode.com/gh_mirrors/dee/deepspeech