KBGAN项目教程:基于对抗学习的知识图谱嵌入方法

KBGAN项目教程:基于对抗学习的知识图谱嵌入方法

KBGANCode for "KBGAN: Adversarial Learning for Knowledge Graph Embeddings" https://arxiv.org/abs/1711.04071项目地址:https://gitcode.com/gh_mirrors/kb/KBGAN

1. 目录结构及介绍

KBGAN项目遵循了清晰的代码组织结构,便于开发者理解和定制。下面是其主要目录结构及其简要说明:

KBGAN
├── data                  # 数据处理相关文件夹,存放预处理数据和配置。
│   ├── data.zip          # 原始或预处理过的数据压缩包
│   └── config_*.yaml     # 不同数据集对应的配置文件
├── models                # 包含KBGAN模型的定义文件
│   └── kbgan.py         # KBGAN核心模型实现
├── scripts               # 启动脚本和辅助工具
│   ├── pretrain.py       # 预训练脚本
│   └── ...
├── requirements.txt      # 项目依赖列表
├── LICENSE               # 许可证文件,采用MIT许可
└── README.md             # 项目概述和快速入门指南
  • data: 存储数据集以及配置文件,用于数据加载和预处理设置。
  • models: 包含所有模型的源代码,特别是kbgan.py,实现了KBGAN的核心算法逻辑。
  • scripts: 提供了运行项目所需的主要脚本,如预训练模型的启动脚本pretrain.py
  • requirements.txt: 列出了项目运行所需的Python库版本。

2. 项目的启动文件介绍

主要启动文件:pretrain.py

在KBGAN项目中,pretrain.py是预训练模型的主要入口点。通过此脚本,用户可以启动对知识图谱嵌入模型的训练过程。基本使用方式包括指定配置文件路径,允许用户针对不同的数据集和需求调整模型参数。启动命令示例:

python3 pretrain.py --config=config_foobar.yaml --pretrain_config=my_model_name

这里的config_foobar.yaml需要替换为你实际的数据集配置文件名,而my_model_name表示你要使用的模型配置。

3. 项目的配置文件介绍

配置文件格式:.yaml

配置文件(例如config_foobar.yaml)是KBGAN项目中用来定制化模型训练和数据处理的关键。一般包括以下几个关键部分:

  • 数据集设置:指明数据集的位置、名称和可能的特定处理步骤。
  • 模型参数:包括嵌入维度、学习率等影响模型性能的参数。
  • 训练设置:批次大小、迭代轮数、是否使用GPU等训练相关的配置。
  • 负样本采样策略:由于KBGAN关注优化负面样本的生成,这部分配置尤为重要,它定义了如何生成和使用负面样本进行训练。

示例配置片段:

dataset:
  name: foobar            # 数据集名称
embedding:
  dim: 128                # 知识嵌入的维度
training:
  batch_size: 1024       # 批次大小
  epochs: 100             # 训练轮数
negative_sampling:        # 负采样配置
  strategy: adaptive     # 使用自适应负采样策略

确保修改配置文件以符合你的具体需求,然后通过相应的脚本启动训练流程。记住,根据KBGAN的特殊需求,项目要求PyTorch的具体版本0.2.0,且较新版本可能不兼容,因此在开始之前需检查并准备正确的环境。

KBGANCode for "KBGAN: Adversarial Learning for Knowledge Graph Embeddings" https://arxiv.org/abs/1711.04071项目地址:https://gitcode.com/gh_mirrors/kb/KBGAN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

左萱莉Maude

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值