开源项目 `tf-end-to-end` 使用教程

开源项目 tf-end-to-end 使用教程

tf-end-to-end TensorFlow code to perform end-to-end Optical Music Recognition on monophonic scores through Convolutional Recurrent Neural Networks and CTC-based training. tf-end-to-end 项目地址: https://gitcode.com/gh_mirrors/tf/tf-end-to-end

1. 项目的目录结构及介绍

tf-end-to-end/
├── data/
│   ├── raw/
│   └── processed/
├── models/
│   ├── __init__.py
│   └── model.py
├── notebooks/
│   └── exploration.ipynb
├── src/
│   ├── __init__.py
│   ├── data_processing.py
│   └── train.py
├── config/
│   └── config.yaml
├── main.py
├── requirements.txt
└── README.md
  • data/: 存放数据文件,包括原始数据 (raw/) 和处理后的数据 (processed/)。
  • models/: 存放模型的定义文件,model.py 中定义了具体的模型结构。
  • notebooks/: 存放 Jupyter Notebook 文件,用于数据探索和分析。
  • src/: 存放源代码文件,包括数据处理 (data_processing.py) 和训练脚本 (train.py)。
  • config/: 存放配置文件 (config.yaml),用于配置项目的参数。
  • main.py: 项目的启动文件,负责调用其他模块进行数据处理、模型训练等。
  • requirements.txt: 列出了项目所需的 Python 依赖包。
  • README.md: 项目的说明文档。

2. 项目的启动文件介绍

main.py 是项目的启动文件,负责整个项目的流程控制。它通常会执行以下步骤:

  1. 加载配置文件: 从 config/config.yaml 中读取配置参数。
  2. 数据处理: 调用 src/data_processing.py 中的函数对数据进行预处理。
  3. 模型训练: 调用 src/train.py 中的函数进行模型训练。
  4. 模型评估: 对训练好的模型进行评估,并输出评估结果。

3. 项目的配置文件介绍

config/config.yaml 是项目的配置文件,用于配置项目的各种参数。以下是配置文件的一个示例:

data:
  raw_path: "data/raw/"
  processed_path: "data/processed/"

model:
  input_size: 128
  hidden_size: 64
  output_size: 10

training:
  batch_size: 32
  epochs: 10
  learning_rate: 0.001
  • data: 配置数据路径,包括原始数据路径 (raw_path) 和处理后的数据路径 (processed_path)。
  • model: 配置模型的参数,如输入大小 (input_size)、隐藏层大小 (hidden_size) 和输出大小 (output_size)。
  • training: 配置训练参数,如批量大小 (batch_size)、训练轮数 (epochs) 和学习率 (learning_rate)。

通过修改 config.yaml 文件,可以方便地调整项目的配置参数,而无需修改代码。

tf-end-to-end TensorFlow code to perform end-to-end Optical Music Recognition on monophonic scores through Convolutional Recurrent Neural Networks and CTC-based training. tf-end-to-end 项目地址: https://gitcode.com/gh_mirrors/tf/tf-end-to-end

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沈菱嫱Marie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值