dbt-databricks 使用教程
dbt-databricksA dbt adapter for Databricks.项目地址:https://gitcode.com/gh_mirrors/db/dbt-databricks
1、项目介绍
dbt-databricks
是一个用于 Databricks 的 dbt 适配器。它基于 dbt-spark
的优秀工作,并提供了一些关键特性,如简单的设置、默认使用开放和高效的 Delta 表格式、支持 Unity Catalog 等。这个适配器使得 dbt 能够与 Databricks 无缝工作,帮助用户自动化数据转换和模型构建。
2、项目快速启动
安装
使用 pip
安装 dbt-databricks
:
pip install dbt-databricks
配置文件设置
在 profiles.yml
文件中设置你的 Databricks 配置:
your_profile_name:
target: dev
outputs:
dev:
type: databricks
catalog: [可选的 catalog 名称,如果你使用 Unity Catalog]
schema: [数据库/模式名称]
host: [your.databrickshost.com]
http_path: [/sql/your/http/path]
token: [dapiXXXXXXXXXXXXXXXXXXXXXXX]
运行你的第一个 dbt 项目
- 创建一个新的 dbt 项目:
dbt init my_new_project
- 进入项目目录并运行项目:
cd my_new_project
dbt run
3、应用案例和最佳实践
使用 dbt Cloud 与 Databricks
dbt Cloud 提供了与 Databricks 的集成,使得你可以轻松地在云环境中管理和运行你的 dbt 项目。
使用 Unity Catalog 与 dbt-databricks
Unity Catalog 提供了三层命名空间(catalog / schema / relations),使得你可以更好地组织和保护你的数据。dbt-databricks
支持 Unity Catalog,让你可以充分利用这一功能。
使用 GitHub Actions 进行 dbt CI/CD
你可以使用 GitHub Actions 自动化你的 dbt 项目的持续集成和持续部署流程,确保代码的质量和部署的自动化。
4、典型生态项目
Delta Lake
Delta Lake 是一个开源的存储层,它将 ACID 事务带到了大数据中,使得你可以构建更可靠的数据湖。dbt-databricks
默认使用 Delta 表格式,提供了更好的性能和数据一致性。
Apache Spark
Apache Spark 是一个快速、通用的大数据处理引擎,Databricks 基于 Spark 构建了其数据处理平台。dbt-databricks
适配器使得 dbt 能够与 Spark 无缝集成,提供强大的数据处理能力。
通过以上步骤和案例,你可以快速上手并充分利用 dbt-databricks
进行数据转换和模型构建。
dbt-databricksA dbt adapter for Databricks.项目地址:https://gitcode.com/gh_mirrors/db/dbt-databricks