dbt-databricks 使用教程

dbt-databricks 使用教程

dbt-databricksA dbt adapter for Databricks.项目地址:https://gitcode.com/gh_mirrors/db/dbt-databricks

1、项目介绍

dbt-databricks 是一个用于 Databricks 的 dbt 适配器。它基于 dbt-spark 的优秀工作,并提供了一些关键特性,如简单的设置、默认使用开放和高效的 Delta 表格式、支持 Unity Catalog 等。这个适配器使得 dbt 能够与 Databricks 无缝工作,帮助用户自动化数据转换和模型构建。

2、项目快速启动

安装

使用 pip 安装 dbt-databricks

pip install dbt-databricks

配置文件设置

profiles.yml 文件中设置你的 Databricks 配置:

your_profile_name:
  target: dev
  outputs:
    dev:
      type: databricks
      catalog: [可选的 catalog 名称,如果你使用 Unity Catalog]
      schema: [数据库/模式名称]
      host: [your.databrickshost.com]
      http_path: [/sql/your/http/path]
      token: [dapiXXXXXXXXXXXXXXXXXXXXXXX]

运行你的第一个 dbt 项目

  1. 创建一个新的 dbt 项目:
dbt init my_new_project
  1. 进入项目目录并运行项目:
cd my_new_project
dbt run

3、应用案例和最佳实践

使用 dbt Cloud 与 Databricks

dbt Cloud 提供了与 Databricks 的集成,使得你可以轻松地在云环境中管理和运行你的 dbt 项目。

使用 Unity Catalog 与 dbt-databricks

Unity Catalog 提供了三层命名空间(catalog / schema / relations),使得你可以更好地组织和保护你的数据。dbt-databricks 支持 Unity Catalog,让你可以充分利用这一功能。

使用 GitHub Actions 进行 dbt CI/CD

你可以使用 GitHub Actions 自动化你的 dbt 项目的持续集成和持续部署流程,确保代码的质量和部署的自动化。

4、典型生态项目

Delta Lake

Delta Lake 是一个开源的存储层,它将 ACID 事务带到了大数据中,使得你可以构建更可靠的数据湖。dbt-databricks 默认使用 Delta 表格式,提供了更好的性能和数据一致性。

Apache Spark

Apache Spark 是一个快速、通用的大数据处理引擎,Databricks 基于 Spark 构建了其数据处理平台。dbt-databricks 适配器使得 dbt 能够与 Spark 无缝集成,提供强大的数据处理能力。

通过以上步骤和案例,你可以快速上手并充分利用 dbt-databricks 进行数据转换和模型构建。

dbt-databricksA dbt adapter for Databricks.项目地址:https://gitcode.com/gh_mirrors/db/dbt-databricks

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

石菱格Maureen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值