PanopticDepth 项目教程
1. 项目的目录结构及介绍
PanopticDepth 项目的目录结构如下:
PanopticDepth/
├── configs/
│ └── cityscapes/
│ └── PanopticDepth-R50-cityscapes-FullScaleFinetune.yaml
├── datasets/
├── projects/
│ └── PanopticDepth/
│ ├── LICENSE
│ ├── README.md
│ ├── overview.jpg
│ └── train.py
├── LICENSE
├── README.md
└── overview.jpg
目录结构介绍
configs/
: 包含项目的配置文件。cityscapes/
: 包含针对 Cityscapes 数据集的配置文件。
datasets/
: 用于存放数据集的目录。projects/
: 包含主要项目的目录。PanopticDepth/
: 主要项目的根目录。LICENSE
: 项目的许可证文件。README.md
: 项目的介绍文档。overview.jpg
: 项目的概览图片。train.py
: 项目的启动文件。
LICENSE
: 项目的许可证文件。README.md
: 项目的介绍文档。overview.jpg
: 项目的概览图片。
2. 项目的启动文件介绍
项目的启动文件是 train.py
,位于 projects/PanopticDepth/
目录下。该文件用于训练和评估模型。
启动文件功能
- 训练模型:
python3 train.py --config-file configs/cityscapes_dps/PanopticDepth-R50-cityscapes-dps.yaml --num-gpus 8 MODEL_WEIGHTS /output/ps_fsf/model_final.pth OUTPUT_DIR /output/dps
- 评估模型:
cd /projects/PanopticDepth/ python3 train.py --eval-only --config-file <config.yaml> --num-gpus 8 MODEL_WEIGHTS /path/to/model_checkpoint
3. 项目的配置文件介绍
项目的配置文件位于 configs/
目录下,主要配置文件是 PanopticDepth-R50-cityscapes-FullScaleFinetune.yaml
。
配置文件内容
MODEL
: 定义模型的结构和参数。WEIGHTS
: 指定预训练模型的路径。OUTPUT_DIR
: 指定输出目录。num-gpus
: 指定使用的 GPU 数量。
示例配置文件内容:
MODEL:
WEIGHTS: /output/ps/model_final.pth
OUTPUT_DIR: /output/ps_fsf
num-gpus: 8
以上是 PanopticDepth 项目的教程,包含了项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考