将LLaMA模型导出为ONNX格式的教程

将LLaMA模型导出为ONNX格式的教程

项目地址:https://gitcode.com/gh_mirrors/ex/export_llama_to_onnx

项目介绍

export_llama_to_onnx 是一个开源项目,旨在将类似于LLaMA的大型语言模型(LLM)导出为ONNX格式,而无需修改 transformers 库中的 modeling_xx_model.py 文件。该项目支持多种模型,包括LLaMA、Alpaca等,并且还支持Baichuan、Alibaba Qwen、ChatGlm2/ChatGlm3、Gemma和Bloom等模型。

项目快速启动

安装依赖

首先,确保你已经安装了必要的依赖包:

pip install -r requirements.txt

导出LLaMA模型为ONNX格式

以下是一个简单的示例,展示如何将LLaMA模型导出为ONNX格式:

python export_llama.py -m model_dir -o out_dir --dtype fp16

导出Qwen模型为ONNX格式

如果你需要导出Qwen模型,可以使用以下命令:

python export_qwen_naive.py -m model_dir -o out_dir --dtype fp16

在导出Qwen模型之前,建议替换 modeling_qwen.py 中的 rearrange 操作,以简化导出的ONNX模型。

导出ChatGlm2模型为ONNX格式

导出ChatGlm2模型的命令如下:

python export_chatglm2.py -m model_dir --dtype fp16

请确保使用PyTorch 2.1或更高版本(如果尚未发布,请使用最新的nightly版本)。

应用案例和最佳实践

案例1:LLaMA模型的ONNX导出

假设你有一个LLaMA模型的目录 model_dir,你可以使用以下命令将其导出为ONNX格式:

python export_llama.py -m model_dir -o out_dir --dtype fp16

案例2:Qwen模型的ONNX导出

对于Qwen模型,你可以使用以下命令进行导出:

python export_qwen_naive.py -m model_dir -o out_dir --dtype fp16

最佳实践

  1. 使用合适的ONNX opset版本:在导出模型时,可以通过 --opset 参数设置ONNX opset版本。
  2. 添加topk warper:使用 --add_topk_warper 参数可以为ONNX模型添加topk warper。
  3. 卸载FlashAttention:在模型转换之前,请卸载或禁用FlashAttention(和可能的xformers)。

典型生态项目

1. ONNX Runtime

ONNX Runtime 是一个高性能的推理引擎,支持多种硬件加速,包括CPU、GPU和FPGA。通过将模型导出为ONNX格式,可以利用ONNX Runtime进行高效的推理。

2. Hugging Face Transformers

Hugging Face 的 transformers 库提供了丰富的预训练模型,支持多种模型架构。通过 export_llama_to_onnx 项目,可以将这些模型导出为ONNX格式,以便在不同的推理环境中使用。

3. PyTorch

PyTorch 是一个广泛使用的深度学习框架,支持动态计算图和高效的GPU加速。通过 export_llama_to_onnx 项目,可以将PyTorch模型导出为ONNX格式,以便在其他推理引擎中使用。

4. ONNX Simplifier

onnxsim_large_model 是一个用于简化大型ONNX模型的工具。通过使用该工具,可以进一步优化导出的ONNX模型,提高推理性能。

通过以上步骤和工具,你可以轻松地将LLaMA等大型语言模型导出为ONNX格式,并在不同的推理环境中进行高效部署。

export_llama_to_onnx export llama to onnx export_llama_to_onnx 项目地址: https://gitcode.com/gh_mirrors/ex/export_llama_to_onnx

### 将模型文件转换为ONNX格式模型文件转换为ONNX格式的过程通常涉及以下几个方面的内容: #### 1. 使用Python脚本导出LLaMA模型ONNX格式 可以利用特定的Python脚本来完成这一过程。例如,对于LLaMA模型,可以通过运行以下命令来实现其向ONNX格式的转换[^1]: ```bash python export_llama.py -m model_dir -o out_dir --dtype fp16 ``` 此命令会调用`export_llama.py`脚本,并指定输入模型目录(`model_dir`)以及输出目录(`out_dir`),同时设置数据类型为半精度浮点数(fp16),从而减少存储需求并提高推理速度。 #### 2. 转换PyTorch模型ONNX格式 如果目标是从PyTorch框架下的模型出发,则可参考微软官方文档中的指导方法[^2]。具体而言,在Python环境中执行如下操作即可完成转换: ```python import torch from torchvision import models # 加载预训练模型 model = models.resnet50(pretrained=True) # 设置模型进入评估模式 model.eval() # 创建虚拟输入张量用于跟踪计算图结构 dummy_input = torch.randn(1, 3, 224, 224) # 执行导出动作 torch.onnx.export(model, dummy_input, "resnet50.onnx", input_names=['input'], output_names=['output']) ``` 上述代码片段展示了如何基于ResNet-50网络实例化一个模型对象,并将其保存成名为`resnet50.onnx`的文件形式。其中还定义了一个随机初始化的数据样本作为占位符参与整个流程。 #### 3. 利用ONNX Runtime进行后续处理 一旦成功完成了从原始框架到通用中间表示(即ONNX)之间的转变之后,就可以借助像ONNX Runtime这样的工具来进行高效部署与测试了[^3]。这不仅限于单一平台或者硬件架构的支持情况;相反地,它允许跨多种设备无缝切换而无需重新编写任何业务逻辑部分。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

史姿若Muriel

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值