红酒暖心也暖胃
码龄8年
关注
提问 私信
  • 博客:110,033
    视频:964
    110,997
    总访问量
  • 55
    原创
  • 22,473
    排名
  • 72
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:吃喝玩乐,洋洋皆可。。。。方便他人,方便自己

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2016-12-27
博客简介:

红酒暖心不暖胃

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    236
    当月
    0
个人成就
  • 获得111次点赞
  • 内容获得65次评论
  • 获得120次收藏
创作历程
  • 7篇
    2024年
  • 10篇
    2022年
  • 6篇
    2021年
  • 10篇
    2019年
  • 9篇
    2018年
  • 21篇
    2017年
  • 5篇
    2016年
成就勋章
TA的专栏
  • AIGC
    6篇
  • nlp
    16篇
  • 李航-统计学习方法
    2篇
  • leetcode
    8篇
兴趣领域 设置
  • 人工智能
    tensorflownlp
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

huggingface之tokenization基础结构Trie-代码解读

对字典树的代码进行解读,并对其中发现的一个bug进行标注且修改
原创
发布博客 2024.10.30 ·
279 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

attn_mask-代码解读

看到关于attn_mask给出了一个新的源文件,里面包含了创建4d_causal_attention源码,那是怎么实现的呢,一起来看一下吧。
原创
发布博客 2024.10.22 ·
215 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

ROPE及各种变体-代码解读

看到关于rope给出了一个新的源文件,里面包含了rope及多种变体的源码,那都有哪些变体呢,又是怎么实现的呢,各个变体之间的区别和联系是什么呢,一起来看一下吧。
原创
发布博客 2024.10.17 ·
651 阅读 ·
26 点赞 ·
0 评论 ·
10 收藏

MINICPM-V2_6图像+文本得到embedding-代码解读

基于将不同长度的图片patch embedding通过resampler变换成固定长度的patch embedding,那这个patch embedding是怎么和文本embedding到一起的呢?本篇从此出发,一起来看一下吧。
原创
发布博客 2024.09.25 ·
519 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

MINICPM-V2_6之图像embedding的resampler-代码解读

既然是attention,那其中必然有位置embedding,这里使用的是ROPE,只是因为是2D,所以这里也要处理一下得到2D的位置embedding"""输入:embed_dim: 向量维度输出:demo:"""else:grid = np.meshgrid(grid_w, grid_h) # 生成网格,但是这里是w在前;torch.meshgrid是h在前grid = np.stack(grid, axis=0)# 在第0维拼接"""输入:embed_dim: 向量维度。
原创
发布博客 2024.09.13 ·
890 阅读 ·
22 点赞 ·
0 评论 ·
18 收藏

MINICPM-V2_6图像得到embedding-代码解读

通过阅读代码,找到MINICPM-V2_6由图片得到embedding(位置编码和像素编码)的过程,并将代码本地化,每个代码都有对应的输入和输出,并详细的介绍了2D位置编码得到的过程。
原创
发布博客 2024.09.11 ·
754 阅读 ·
20 点赞 ·
0 评论 ·
21 收藏

MINICPM-V2_6图像预处理流程-代码解读

通过阅读多个代码,找到MINICPM-V2_6对应的图片切片的过程,并将代码本地化,每个代码块都有完整的输入输出,且解读了代码的每一步流程
原创
发布博客 2024.09.10 ·
1080 阅读 ·
14 点赞 ·
0 评论 ·
11 收藏

All mistakes are not equal: Comprehensive Hierarchy Aware Multi-label Predictions (CHAMP)

多层级loss函数
原创
发布博客 2022.08.15 ·
471 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

representation learning for resource-constrained keyphrase generation

关键词生成2022
原创
发布博客 2022.08.01 ·
306 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

InferSent

Supervised Learning of Universal Sentence Representations from Natural Language Inference DataGitHub论文目的NLP系统基于word embedding作为base features,却很少有成功的sentence embedding。本论文基于Stanford NLI数据得到好的sentence representations,也可以转换到其它数据集。相关工作word2vecgloveSkip
原创
发布博客 2022.01.27 ·
945 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ERNIE-DOC

ERNIE-DOC: A Retrospective Long-Document Modeling TransformerGitHub论文目的因为随着长度的增加,transformer的内存和时间消耗成倍增加,所以transformer不适合处理长文本。简单的截断文档或使用稀疏attention并不能解决这个问题,提出ERNIE-DOC:一种基于循环transformer的文档级语言预训练模型,由两种技术组成:retrospective feed mechanism(回溯) and the enhan
原创
发布博客 2022.01.20 ·
1268 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

GATER

Heterogeneous Graph Neural Networks for Keyphrase GenerationGitHub论文目的keyphrase generation(KG)同时预测present keyphrases和absent keyphrases,但是仅依靠source document会产生不可控和不准确的absent keyphrases。为了解决这个问题,本论文基于图从相关的参考文献中获取显式的信息,首先从预定义的索引中找到与source document相似的文档-关键词
原创
发布博客 2022.01.18 ·
988 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

HiDEC

HIERARCHY DECODER IS ALL YOU NEED TO TEXT CLASSIFICATIONGitHub论文目的Hierarchical text classification (HTC) 会有数据不平衡和层级依赖的缺点,有local和global两种改进方向,hierarchy decoder (HiDEC)基于编码器、解码器的层次递归解码,The key idea of the HiDEC involves decoding a context matrix into a su
原创
发布博客 2022.01.12 ·
372 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

TRANS-ENCODER

TRANS-ENCODER: UNSUPERVISED SENTENCE-PAIR MODELLING THROUGH SELF- AND MUTUAL-DISTILLATIONSGitHub论文目的sentence similarity and paraphrase identification 两句话进行对比有两种常见的方法: bi-encoders and cross-encoders。Bi-encoders产生固定维度的句子表达,效果不如cross-encoders好,cross-encode
原创
发布博客 2022.01.08 ·
1007 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Fast, Effective, and Self-Supervised:Mirror-BERT

Fast, Effective, and Self-Supervised: Transforming Masked LanguageModels into Universal Lexical and Sentence Encoders论文目的没有经过特定任务微调的预训练MLMs对句子编码是无效的,本论文想基于自监督将MLMs在不引入新数据的前提下对句子编码。提出Mirror-BERT:简单、快速、有效,通过对字符串进行小的修改形成正样本进行微调,有些数据集上效果与sentence-bert可媲美相关
原创
发布博客 2022.01.05 ·
702 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

开源数据集

遇到哪个加哪个NLPSTSSTS中的训练、测试、验证集的数量,语义文本相似性基准数据集,常用于无监督模型训练的测试集,使用Spearman correlation作为评价指标。STS-B http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmarkmain-captionsMSRvid2012test00005.000A man with a hard hat is dancing.A man wearin
原创
发布博客 2022.01.04 ·
752 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ESimCSE: Enhanced Sample Building Method for Contrastive Learning of Unsupervised Sentence Embedding

论文目的SimCSE 使用dropout作为数据增强的最小方法,因为transformer使用位置embedding,句子的长度信息会被编码到句子embedding中,所以unsup-SimCSE的正对包含相同的长度信息。所以unsup-SimCSE训练的正样本对估计是有偏的,会倾向于将有相同或类似长度的句子是相似的,通过统计观察,发现unsup-SimCSE的确有这个问题。为了缓解它,使用一个简单的重复操作来修改句子,然后将句子和修改后的句子输入transformer来得到正对,且从CV中引入momen
原创
发布博客 2022.01.04 ·
1054 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

R-Drop: Regularized Dropout for Neural Networks

论文目的dropout会给训练和测试的过程中带来不一致,regularize dropout 简单的一致性训练策略,迫使dropout产生的子模型输出分布一致,这是通过约束每个样本两个子模型的输出的双向KL散度来达到的。在 neural machine translation, abstractive summarization, language understanding, language modeling, and image classification五个任务上做了实验。方法R-Drop
原创
发布博客 2021.12.31 ·
1059 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

SimCSE: Simple Contrastive Learning of Sentence Embeddings

论文目的SimCSE:simple contrastive sentence embedding framework首先提出一种无监督的方法,仅使用dropout作为噪声,进行对比训练。与有监督的方法效果类似,dropout充当了最小的数据增强的方法,删除它模型会崩溃。然后提出一种有监督的方法,使用自然语言推理(NLI)中的蕴含作为正对、矛盾作为负例,在STS任务上评估SimCSE,在无监督和有监督的任务上都有提升。还在理论和试验上证明了对比学习目标将预训练嵌入的各向异性空间正则化,使其更加均匀。
原创
发布博客 2021.12.24 ·
1834 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Simple Contrastive Representation Adversarial Learning for NLP Tasks

这里写自定义目录标题论文目的相关工作contrastive learningAdversarial Training and Adversarial Attack本文方法Adversarial Training And Adversarial Attack MethodsSelf-supervised Contrastive LearningSupervised Contrastive Adversarial LearningUnsupervised Contrastive Adversarial Lear
原创
发布博客 2021.12.24 ·
2129 阅读 ·
0 点赞 ·
4 评论 ·
0 收藏
加载更多