ReZygisk项目安装与配置指南

ReZygisk项目安装与配置指南

ReZygisk Standalone implementation of Zygisk but better. ReZygisk 项目地址: https://gitcode.com/gh_mirrors/re/ReZygisk

1. 项目基础介绍

ReZygisk是基于Zygisk Next的一个分支项目,它为KernelSU、Magisk以及其他一些框架提供Zygisk API支持。ReZygisk项目的目标是使用C语言重写代码库(原为C++和Rust),以提高Zygisk API实现的效率,同时采用更加宽容的许可证。

该项目主要使用的编程语言是C++和C。

2. 项目使用的关键技术和框架

  • Android NDK:Android原生开发工具包,用于在Android平台上进行原生代码的开发。
  • lsplt:一个简单的PLT钩子工具,用于在Android平台上进行函数钩取。

3. 项目安装和配置的准备工作及详细步骤

准备工作

在开始安装ReZygisk之前,请确保您的开发环境满足以下要求:

  • 安装有Android Studio或相应版本的Gradle。
  • 确保您的Android设备已经启用了开发者选项,并允许了USB调试。
  • 确保您的设备已经安装了Magisk或者KernelSU。
  • 准备一个可靠的数据线和一台已root的Android设备。

安装步骤

  1. 克隆项目

    打开终端(或命令提示符),使用以下命令克隆ReZygisk项目:

    git clone https://github.com/PerformanC/ReZygisk.git
    
  2. 安装依赖

    在项目根目录下执行以下命令安装项目依赖:

    ./gradlew build
    

    如果在执行过程中遇到任何依赖问题,请根据错误提示进行相应的解决。

  3. 构建项目

    使用Android Studio打开项目,或继续在命令行中执行以下命令来构建项目:

    ./gradlew assembleDebug
    

    构建完成后,你会在项目的app/build/outputs/apk/debug目录下找到构建好的APK文件。

  4. 安装到设备

    将APK文件传输到你的Android设备,并使用设备上的文件管理器或者第三方应用安装该APK。

  5. 配置应用

    安装完成后,打开应用并根据提示进行配置。确保你的设备已经安装了Magisk或KernelSU,并且已经正确配置。

  6. 测试

    完成配置后,你可以测试ReZygisk是否正常工作。你可以通过设备上的Magisk或KernelSU应用来管理ReZygisk模块。

请务必遵循项目的使用说明和提示,以免造成设备不稳定或数据丢失。如果在安装或配置过程中遇到任何问题,可以查看项目的README文件或加入项目的社区进行咨询。

ReZygisk Standalone implementation of Zygisk but better. ReZygisk 项目地址: https://gitcode.com/gh_mirrors/re/ReZygisk

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层和卷积层,并编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像分割任务,常用的损失
内容概要:本文详细介绍了威纶通标准程序集锦,涵盖了多个常用功能模块,如XY曲线绘制、配方管理、权限设置、报警记录查询操作、操作记录查询等。每个功能模块不仅提供了完整的代码示例,还附带了详细的解释和优化建议。例如,XY曲线功能展示了如何进行坐标系转换并保持画面流畅;配方管理部分则强调了合理的寄存器规划和数据保存方法;权限管理模块引入了MD5加密和全局权限变量传递,确保系统的安全性和灵活性;报警记录处理采用了类SQL查询方式,能够高效处理大量报警数据。此外,操作记录模块采用三层架构设计,便于审计和项目验收文档生成。这套程序不仅功能全面,界面简洁,而且各个模块之间通过全局变量耦合,实现了松耦合结构,方便移植和扩展。 适合人群:初学者、在校学生以及有一定经验的工程师。 使用场景及目标:① 初学者可以通过这套程序快速掌握威纶通触摸屏编程的基本技能;② 工程师可以在实际项目中直接引用或修改这些功能模块,提高开发效率;③ 学习权限管理和数据处理的最佳实践,提升系统安全性。 阅读建议:建议读者仔细研读每个功能模块的代码实现及其背后的原理,尤其是权限管理和报警记录处理部分,这对于理解和设计复杂系统非常重要。同时,可以根据具体需求对代码进行适当调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

史姿若Muriel

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值