PyTorch-SoftDTW-CUDA 项目教程

PyTorch-SoftDTW-CUDA 项目教程

pytorch-softdtw-cudaFast CUDA implementation of (differentiable) soft dynamic time warping for PyTorch using Numba项目地址:https://gitcode.com/gh_mirrors/py/pytorch-softdtw-cuda

1、项目的目录结构及介绍

pytorch-softdtw-cuda/
├── LICENSE
├── README.md
├── gitignore
├── soft_dtw_cuda.py
  • LICENSE: 项目的许可证文件。
  • README.md: 项目的说明文档,包含项目的基本介绍、安装和使用方法。
  • gitignore: Git 忽略配置文件,指定哪些文件或目录不需要被 Git 追踪。
  • soft_dtw_cuda.py: 项目的主要实现文件,包含 SoftDTW 的 CUDA 实现。

2、项目的启动文件介绍

项目的启动文件是 soft_dtw_cuda.py。该文件包含了 SoftDTW 的 CUDA 实现,包括前向传播和后向传播的逻辑。以下是该文件的主要内容:

from soft_dtw_cuda import SoftDTW

# 示例代码
batch_size, len_x, len_y, dims = 8, 15, 12, 5
x = torch.rand((batch_size, len_x, dims), requires_grad=True)
y = torch.rand((batch_size, len_y, dims))

# 将张量转移到 GPU
x = x.cuda()
y = y.cuda()

# 创建 SoftDTW 对象
sdtw = SoftDTW(use_cuda=True, gamma=0.1)

# 计算损失值
loss = sdtw(x, y)

3、项目的配置文件介绍

项目没有明确的配置文件,但可以通过修改 soft_dtw_cuda.py 中的参数来调整 SoftDTW 的行为。例如,可以修改 gamma 参数来调整 SoftDTW 的平滑度。

sdtw = SoftDTW(use_cuda=True, gamma=0.1)

通过调整 gamma 参数,可以控制 SoftDTW 的平滑度,从而影响损失值的计算。

pytorch-softdtw-cudaFast CUDA implementation of (differentiable) soft dynamic time warping for PyTorch using Numba项目地址:https://gitcode.com/gh_mirrors/py/pytorch-softdtw-cuda

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

束慧可Melville

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值