PSFRGAN 项目使用教程

PSFRGAN 项目使用教程

PSFRGAN PSFRGAN 项目地址: https://gitcode.com/gh_mirrors/ps/PSFRGAN

1. 项目介绍

PSFRGAN(Progressive Semantic-Aware Style Transformation for Blind Face Restoration)是一个基于PyTorch的开源项目,旨在通过渐进式的语义感知风格转换技术来实现盲人脸修复。该项目在CVPR 2021上发表,由Chaofeng Chen等人开发。PSFRGAN能够有效地提升低质量人脸图像的分辨率和质量,适用于各种人脸修复场景。

2. 项目快速启动

2.1 环境准备

  • Ubuntu 18.04
  • CUDA 10.1
  • Python 3.7

2.2 安装依赖

首先,克隆项目到本地:

git clone https://github.com/chaofengc/PSFRGAN.git
cd PSFRGAN

然后,安装所需的Python包:

pip3 install -r requirements.txt

2.3 下载预训练模型和数据集

下载预训练模型并将其放置在/pretrain_models目录下。数据集可以从以下链接下载:

2.4 测试单张图像

运行以下脚本以增强单张输入图像中的人脸:

python test_enhance_single_unalign.py --test_img_path /test_dir/test_hzgg.jpg --results_dir test_hzgg_results --gpus 1

该脚本将执行以下操作:

  1. 从输入图像中裁剪并对齐所有面部,存储在results_dir/LQ_faces
  2. 解析这些面部并进行增强,结果存储在results_dir/ParseMapsresults_dir/HQ
  3. 将增强后的面部粘贴回原始图像,结果存储在results_dir/hq_final.jpg

2.5 测试图像文件夹

对于多张图像,首先裁剪并对齐所有面部:

python align_and_crop_dir.py --src_dir test_dir --results_dir test_dir_align_results

然后,解析并增强对齐后的面部:

python test_enhance_dir_align.py --src_dir test_dir_align_results --results_dir test_dir_enhance_results

结果将分别存储在results_dir/lqresults_dir/parseresults_dir/hq

3. 应用案例和最佳实践

3.1 人脸修复

PSFRGAN可以用于修复低质量的人脸图像,提升图像的分辨率和质量。例如,在监控视频中,由于分辨率低或光照条件差,人脸图像可能模糊不清。使用PSFRGAN可以显著改善这些图像的质量。

3.2 图像增强

在图像增强领域,PSFRGAN可以用于提升图像的整体质量,特别是在人脸识别系统中,高质量的人脸图像可以提高识别准确率。

3.3 最佳实践

  • 数据准备:确保输入图像的质量和分辨率适中,避免极端情况下的图像处理。
  • 参数调整:根据具体需求调整--gpus--batch_size等参数,以获得最佳性能。
  • 模型选择:根据任务需求选择合适的预训练模型,或自行训练模型以适应特定场景。

4. 典型生态项目

4.1 DFDNet

DFDNet(Deep Face Deblurring Network)是一个用于人脸去模糊的开源项目,与PSFRGAN结合使用可以进一步提升人脸图像的质量。

4.2 HiFaceGAN

HiFaceGAN(High-Fidelity Face GAN)是一个高保真人脸生成网络,可以与PSFRGAN结合使用,生成高质量的人脸图像。

4.3 SPADE

SPADE(Semantic Image Synthesis with Spatially-Adaptive Normalization)是一个用于语义图像合成的项目,PSFRGAN在其基础上进行了改进,实现了更高质量的人脸修复。

通过这些生态项目的结合,可以构建更强大的人脸图像处理系统,满足不同应用场景的需求。

PSFRGAN PSFRGAN 项目地址: https://gitcode.com/gh_mirrors/ps/PSFRGAN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸锬泽Jemima

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值