PSFRGAN 项目使用教程
PSFRGAN 项目地址: https://gitcode.com/gh_mirrors/ps/PSFRGAN
1. 项目介绍
PSFRGAN(Progressive Semantic-Aware Style Transformation for Blind Face Restoration)是一个基于PyTorch的开源项目,旨在通过渐进式的语义感知风格转换技术来实现盲人脸修复。该项目在CVPR 2021上发表,由Chaofeng Chen等人开发。PSFRGAN能够有效地提升低质量人脸图像的分辨率和质量,适用于各种人脸修复场景。
2. 项目快速启动
2.1 环境准备
- Ubuntu 18.04
- CUDA 10.1
- Python 3.7
2.2 安装依赖
首先,克隆项目到本地:
git clone https://github.com/chaofengc/PSFRGAN.git
cd PSFRGAN
然后,安装所需的Python包:
pip3 install -r requirements.txt
2.3 下载预训练模型和数据集
下载预训练模型并将其放置在/pretrain_models
目录下。数据集可以从以下链接下载:
- GitHub
- BaiduNetDisk 提取码: gj2r
2.4 测试单张图像
运行以下脚本以增强单张输入图像中的人脸:
python test_enhance_single_unalign.py --test_img_path /test_dir/test_hzgg.jpg --results_dir test_hzgg_results --gpus 1
该脚本将执行以下操作:
- 从输入图像中裁剪并对齐所有面部,存储在
results_dir/LQ_faces
。 - 解析这些面部并进行增强,结果存储在
results_dir/ParseMaps
和results_dir/HQ
。 - 将增强后的面部粘贴回原始图像,结果存储在
results_dir/hq_final.jpg
。
2.5 测试图像文件夹
对于多张图像,首先裁剪并对齐所有面部:
python align_and_crop_dir.py --src_dir test_dir --results_dir test_dir_align_results
然后,解析并增强对齐后的面部:
python test_enhance_dir_align.py --src_dir test_dir_align_results --results_dir test_dir_enhance_results
结果将分别存储在results_dir/lq
、results_dir/parse
和results_dir/hq
。
3. 应用案例和最佳实践
3.1 人脸修复
PSFRGAN可以用于修复低质量的人脸图像,提升图像的分辨率和质量。例如,在监控视频中,由于分辨率低或光照条件差,人脸图像可能模糊不清。使用PSFRGAN可以显著改善这些图像的质量。
3.2 图像增强
在图像增强领域,PSFRGAN可以用于提升图像的整体质量,特别是在人脸识别系统中,高质量的人脸图像可以提高识别准确率。
3.3 最佳实践
- 数据准备:确保输入图像的质量和分辨率适中,避免极端情况下的图像处理。
- 参数调整:根据具体需求调整
--gpus
、--batch_size
等参数,以获得最佳性能。 - 模型选择:根据任务需求选择合适的预训练模型,或自行训练模型以适应特定场景。
4. 典型生态项目
4.1 DFDNet
DFDNet(Deep Face Deblurring Network)是一个用于人脸去模糊的开源项目,与PSFRGAN结合使用可以进一步提升人脸图像的质量。
4.2 HiFaceGAN
HiFaceGAN(High-Fidelity Face GAN)是一个高保真人脸生成网络,可以与PSFRGAN结合使用,生成高质量的人脸图像。
4.3 SPADE
SPADE(Semantic Image Synthesis with Spatially-Adaptive Normalization)是一个用于语义图像合成的项目,PSFRGAN在其基础上进行了改进,实现了更高质量的人脸修复。
通过这些生态项目的结合,可以构建更强大的人脸图像处理系统,满足不同应用场景的需求。