DinkyTrain 开源项目使用教程

DinkyTrain 开源项目使用教程

DinkyTrain Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃 DinkyTrain 项目地址: https://gitcode.com/gh_mirrors/di/DinkyTrain

1. 项目的目录结构及介绍

DinkyTrain 项目的目录结构如下:

DinkyTrain/
├── docs/
├── examples/
├── fairseq/
│   ├── fairseq_cli/
│   └── ...
├── huggingface/
├── scripts/
├── tests/
├── .gitignore
├── .gitmodules
├── LICENSE
├── README.md
├── finetune_glue.sh
├── run_efficient_mlm_recipe.sh
├── setup.py
├── train.py
└── ...

目录结构介绍

  • docs/: 存放项目文档,包括使用说明、API文档等。
  • examples/: 包含一些示例代码,帮助用户快速上手。
  • fairseq/: 项目的主要代码库,基于 fairseq 实现。
    • fairseq_cli/: fairseq 的命令行接口代码。
  • huggingface/: 包含与 HuggingFace 相关的代码和工具。
  • scripts/: 存放一些脚本文件,如数据预处理、模型转换等。
  • tests/: 存放测试代码,用于确保代码的正确性。
  • .gitignore: Git 忽略文件配置。
  • .gitmodules: Git 子模块配置。
  • LICENSE: 项目许可证文件。
  • README.md: 项目介绍和使用说明。
  • finetune_glue.sh: 用于在 GLUE 数据集上微调模型的脚本。
  • run_efficient_mlm_recipe.sh: 用于高效预训练的脚本。
  • setup.py: 项目安装脚本。
  • train.py: 训练模型的主脚本。

2. 项目的启动文件介绍

train.py

train.py 是 DinkyTrain 项目的主要启动文件,用于启动模型的训练过程。该文件包含了模型的训练逻辑、数据加载、优化器配置等。

run_efficient_mlm_recipe.sh

run_efficient_mlm_recipe.sh 是一个脚本文件,用于高效地进行掩码语言模型(MLM)的预训练。该脚本会调用 train.py 并传入相应的参数,以启动预训练过程。

finetune_glue.sh

finetune_glue.sh 是一个脚本文件,用于在 GLUE 数据集上微调预训练模型。该脚本会调用 train.py 并传入微调所需的参数。

3. 项目的配置文件介绍

setup.py

setup.py 是项目的安装配置文件,用于配置项目的依赖项、版本信息等。通过运行 pip install -e . 可以安装项目及其依赖。

fairseq/fairseq_cli/train.py

fairseq/fairseq_cli/train.py 是 fairseq 的训练配置文件,包含了训练过程中所需的配置选项,如数据路径、模型类型、优化器参数等。用户可以通过命令行参数或配置文件来修改这些配置。

scripts/convert_fs_ckpt_to_hf_ckpt.py

scripts/convert_fs_ckpt_to_hf_ckpt.py 是一个脚本文件,用于将 fairseq 的模型检查点转换为 HuggingFace 的模型检查点。该脚本包含了一些配置选项,如输入输出路径、模型类型等。

通过以上介绍,您可以更好地理解和使用 DinkyTrain 开源项目。

DinkyTrain Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃 DinkyTrain 项目地址: https://gitcode.com/gh_mirrors/di/DinkyTrain

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

顾涓轶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值