DinkyTrain 开源项目使用教程
1. 项目的目录结构及介绍
DinkyTrain 项目的目录结构如下:
DinkyTrain/
├── docs/
├── examples/
├── fairseq/
│ ├── fairseq_cli/
│ └── ...
├── huggingface/
├── scripts/
├── tests/
├── .gitignore
├── .gitmodules
├── LICENSE
├── README.md
├── finetune_glue.sh
├── run_efficient_mlm_recipe.sh
├── setup.py
├── train.py
└── ...
目录结构介绍
- docs/: 存放项目文档,包括使用说明、API文档等。
- examples/: 包含一些示例代码,帮助用户快速上手。
- fairseq/: 项目的主要代码库,基于 fairseq 实现。
- fairseq_cli/: fairseq 的命令行接口代码。
- huggingface/: 包含与 HuggingFace 相关的代码和工具。
- scripts/: 存放一些脚本文件,如数据预处理、模型转换等。
- tests/: 存放测试代码,用于确保代码的正确性。
- .gitignore: Git 忽略文件配置。
- .gitmodules: Git 子模块配置。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- finetune_glue.sh: 用于在 GLUE 数据集上微调模型的脚本。
- run_efficient_mlm_recipe.sh: 用于高效预训练的脚本。
- setup.py: 项目安装脚本。
- train.py: 训练模型的主脚本。
2. 项目的启动文件介绍
train.py
train.py
是 DinkyTrain 项目的主要启动文件,用于启动模型的训练过程。该文件包含了模型的训练逻辑、数据加载、优化器配置等。
run_efficient_mlm_recipe.sh
run_efficient_mlm_recipe.sh
是一个脚本文件,用于高效地进行掩码语言模型(MLM)的预训练。该脚本会调用 train.py
并传入相应的参数,以启动预训练过程。
finetune_glue.sh
finetune_glue.sh
是一个脚本文件,用于在 GLUE 数据集上微调预训练模型。该脚本会调用 train.py
并传入微调所需的参数。
3. 项目的配置文件介绍
setup.py
setup.py
是项目的安装配置文件,用于配置项目的依赖项、版本信息等。通过运行 pip install -e .
可以安装项目及其依赖。
fairseq/fairseq_cli/train.py
fairseq/fairseq_cli/train.py
是 fairseq 的训练配置文件,包含了训练过程中所需的配置选项,如数据路径、模型类型、优化器参数等。用户可以通过命令行参数或配置文件来修改这些配置。
scripts/convert_fs_ckpt_to_hf_ckpt.py
scripts/convert_fs_ckpt_to_hf_ckpt.py
是一个脚本文件,用于将 fairseq 的模型检查点转换为 HuggingFace 的模型检查点。该脚本包含了一些配置选项,如输入输出路径、模型类型等。
通过以上介绍,您可以更好地理解和使用 DinkyTrain 开源项目。