Ploomber项目文件客户端使用指南

Ploomber项目文件客户端使用指南

ploomber The fastest ⚡️ way to build data pipelines. Develop iteratively, deploy anywhere. ☁️ ploomber 项目地址: https://gitcode.com/gh_mirrors/pl/ploomber

文件客户端概述

在Ploomber项目中,文件客户端(File Clients)是一个关键组件,用于将项目生成的文件产品上传到云存储服务。目前,Ploomber支持两种主流云存储服务:Amazon S3和Google Cloud Storage。

文件客户端的主要功能是将本地文件路径转换为云存储路径。例如,本地路径/path/to/project/out/data.csv会被转换为云存储路径path/to/parent/out/data.csv,其中parent是您在云存储桶中指定的父文件夹。

准备工作

在使用文件客户端之前,您需要完成以下准备工作:

  1. 云存储配置

    • 在目标云平台(AWS或Google Cloud)上创建一个存储桶
    • 或者使用现有的存储桶
  2. 认证配置

    • 配置环境变量存储认证凭据
    • 或者创建一个credentials.json文件存储认证信息

创建客户端配置文件

Amazon S3客户端配置

要配置Amazon S3客户端,您需要创建一个clients.py文件,并添加以下内容:

from ploomber.clients import S3Client

def get_s3():
    return S3Client(bucket_name='您的存储桶名称',
                    parent='父文件夹名称',
                    # 如果环境变量未配置认证信息,请提供凭据文件路径
                    json_credentials_path='credentials.json')

Google Cloud Storage客户端配置

对于Google Cloud Storage,配置类似:

from ploomber.clients import GCloudStorageClient

def get_gcloud():
    return GCloudStorageClient(bucket_name='您的存储桶名称',
                               parent='父文件夹名称',
                               # 如果环境变量未配置认证信息,请提供凭据文件路径
                               json_credentials_path='credentials.json')

配置管道文件

配置好客户端后,您需要在pipeline.yaml文件中添加clients配置项,指定要使用的客户端函数:

# 其他配置内容...

clients:
  File: 项目名称.clients.get_client  # 替换为您的实际客户端函数路径

# 其他配置内容...

处理外部数据集

需要注意的是,文件客户端仅用于上传管道生成的产品文件。如果您需要使用外部数据集,应该在管道任务中实现该数据集的下载逻辑。例如:

  1. 在任务脚本中添加下载外部数据集的代码
  2. 将下载的数据集作为任务的输入

高级使用技巧

  1. 本地与云端同步

    • 文件客户端不仅可用于云端部署,也可用于本地开发环境
    • 使用ploomber build命令时,会自动下载之前运行生成的云存储文件
  2. 本地存储客户端

    • Ploomber还提供了LocalStorageClient,主要用于内部测试
    • 也可用于本地备份产品文件
  3. 多环境支持

    • 您可以配置多个客户端函数,根据环境选择不同的客户端
    • 例如,开发环境使用本地存储,生产环境使用云存储

最佳实践建议

  1. 认证管理

    • 优先使用环境变量管理认证信息,避免将凭据文件提交到版本控制系统
    • 为不同的环境使用不同的存储桶或文件夹
  2. 路径规划

    • 合理设计parent参数,建议按项目/环境/日期等维度组织文件
    • 保持本地和云端路径结构的一致性
  3. 性能优化

    • 对于大型文件,考虑使用分块上传
    • 监控上传/下载速度,必要时调整客户端配置参数

通过合理配置和使用Ploomber的文件客户端功能,您可以轻松实现数据管道产出的云端存储和管理,为数据工作流提供可靠的持久化存储解决方案。

ploomber The fastest ⚡️ way to build data pipelines. Develop iteratively, deploy anywhere. ☁️ ploomber 项目地址: https://gitcode.com/gh_mirrors/pl/ploomber

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/00cceecb854d 这个项目名为“mnist-nnet-hls-zynq7020-fpga prj”,是一个与机器学习相关的工程,专注于利用高级综合(HLS)技术将针对MNIST数据集设计的神经网络(nnet)实现在Zynq 7020 FPGA平台上,以加速图像识别任务。项目提供的压缩包包含所有相关代码文件,如C/C++源码、HLS接口定义、Vivado HLS项目文件、硬件描述语言代码(Verilog或VHDL)及配置文件等,用户可通过这些代码理解、实现或修改设计流程。 项目标签“mnist-nnet-hls-z”进一步明确了其关注点:MNIST数据集、HLS技术以及Zynq目标平台。MNIST是用于手写数字识别的知名训练数据集;HLS可将高级编程语言转化为硬件描述语言;Zynq 7020是Xilinx的SoC FPGA,融合了ARM处理器与可编程逻辑。文件名中提到的“vivado”指的是Xilinx的Vivado设计套件,它是一个用于FPGA设计、实现、仿真和调试的集成开发环境,其中的Vivado HLS工具能够将C、C++或SystemC编写的算法自动转换为硬件描述语言代码。 项目可能的实施步骤如下:首先,对MNIST数据集进行预处理,如归一化、降维等,使其适配神经网络模型输入;其次,构建适用于手写数字识别的神经网络模型,例如卷积神经网络(CNN)或全连接网络(FCN);接着,运用HLS工具将神经网络模型转化为硬件描述,并优化性能与资源利用率;然后,在Vivado环境中,将生成的硬件描述代码映射到Zynq 7020的FPGA部分,进行时序分析与综合优化;此外,由于Zynq是SoC,包含处理器系统,还需编写控制软件来管理与调度FPGA上的硬件加速器,可能涉及OpenCV、OpenCL等库的使用;之后,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喻建涛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值