开源项目推荐:基于Prometheus和Grafana的机器学习模型监控系统
1. 项目基础介绍
本项目是一个开源的机器学习模型监控系统,由Jeremy Jordan创建并维护。项目利用了Prometheus和Grafana这两个流行的开源监控工具,旨在为部署在Kubernetes上的机器学习模型提供全面的监控解决方案。项目的主要编程语言是Python,同时使用了Docker进行容器化。
2. 核心功能
- 模型服务监控:通过Prometheus-fastapi-instrumentator,项目可以导出FastAPI服务器的指标数据。
- 生产流量模拟:利用locust工具模拟生产环境中的HTTP请求,从而提供监控数据。
- 指标存储与可视化:Prometheus负责收集和存储指标数据,Grafana则用于将这些数据可视化,帮助用户直观地了解模型性能。
- 易于部署:项目提供了Kubernetes部署文件,用户可以轻松地在Kubernetes集群上部署和运行监控环境。
3. 最近更新的功能
- 优化了部署流程:项目更新了部署脚本和Kubernetes配置文件,使得部署过程更加简洁明了。
- 增强了监控指标:增加了一些新的监控指标,以便更全面地跟踪模型性能和系统健康状况。
- 改进了Grafana仪表板:更新了Grafana的仪表板设计,使其更加直观易用,用户可以更快速地获取所需信息。
- 提升了系统稳定性:对系统进行了多项优化和稳定性提升,确保监控系统的长期稳定运行。