开源项目ANN使用教程

开源项目ANN使用教程

ANN semantic segmentation,pytorch,non-local ANN 项目地址: https://gitcode.com/gh_mirrors/an/ANN

1. 项目介绍

ANN(Asymmetric Non-local Neural Networks)是一个用于语义分割的开源项目,旨在通过非对称非局部神经网络来高效地获取长距离依赖关系。该项目由Zhen Zhu、Mengde Xu、Song Bai、Tengteng Huang和Xiang Bai开发,并计划在ICCV 2019上发表。

主要特点

  • 非对称非局部神经网络:通过AFNB和APNB模块,分别在不同层次和同一层次内进行特征融合和特征细化。
  • 高效性:能够在语义分割任务中高效地处理长距离依赖关系。

2. 项目快速启动

环境准备

确保你的环境满足以下要求:

  • Python 3.6.8
  • GCC 5.4.0
  • CUDA 9.2

安装依赖

pip install -r requirements.txt
cd ext
bash make.sh

数据准备

以Cityscapes数据集为例,下载并预处理数据:

cd datasets/seg/preprocess/cityscapes
bash cityscapes_seg_generator.sh

模型训练

在Cityscapes数据集上进行训练:

bash scripts/seg/cityscapes/run_fs_annn_cityscapes_seg.sh train tag

模型验证

下载训练好的模型并进行验证:

bash scripts/seg/cityscapes/run_fs_annn_cityscapes_seg.sh val ohem

3. 应用案例和最佳实践

应用案例

  • 自动驾驶:在自动驾驶系统中,语义分割用于识别道路、行人、车辆等,ANN的高效性能可以显著提升系统的实时性和准确性。
  • 医学影像分析:在医学影像中,ANN可以用于肿瘤检测、器官分割等任务,提高诊断的准确性和效率。

最佳实践

  • 数据预处理:确保数据集的预处理步骤正确执行,以获得最佳的训练效果。
  • 超参数调优:根据具体任务调整学习率、批量大小等超参数,以优化模型性能。

4. 典型生态项目

相关项目

  • PyTorch:ANN项目基于PyTorch框架开发,PyTorch提供了丰富的工具和库,支持深度学习模型的快速开发和部署。
  • Cityscapes Dataset:Cityscapes是一个广泛使用的语义分割数据集,适用于自动驾驶和机器人导航等应用。

生态项目

  • TorchCV:一个基于PyTorch的计算机视觉框架,提供了多种计算机视觉算法的实现,适合与ANN项目结合使用。

通过以上步骤,你可以快速上手ANN项目,并在实际应用中发挥其高效性能。

ANN semantic segmentation,pytorch,non-local ANN 项目地址: https://gitcode.com/gh_mirrors/an/ANN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

施想钧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值