开源项目ANN使用教程
ANN semantic segmentation,pytorch,non-local 项目地址: https://gitcode.com/gh_mirrors/an/ANN
1. 项目介绍
ANN(Asymmetric Non-local Neural Networks)是一个用于语义分割的开源项目,旨在通过非对称非局部神经网络来高效地获取长距离依赖关系。该项目由Zhen Zhu、Mengde Xu、Song Bai、Tengteng Huang和Xiang Bai开发,并计划在ICCV 2019上发表。
主要特点
- 非对称非局部神经网络:通过AFNB和APNB模块,分别在不同层次和同一层次内进行特征融合和特征细化。
- 高效性:能够在语义分割任务中高效地处理长距离依赖关系。
2. 项目快速启动
环境准备
确保你的环境满足以下要求:
- Python 3.6.8
- GCC 5.4.0
- CUDA 9.2
安装依赖
pip install -r requirements.txt
cd ext
bash make.sh
数据准备
以Cityscapes数据集为例,下载并预处理数据:
cd datasets/seg/preprocess/cityscapes
bash cityscapes_seg_generator.sh
模型训练
在Cityscapes数据集上进行训练:
bash scripts/seg/cityscapes/run_fs_annn_cityscapes_seg.sh train tag
模型验证
下载训练好的模型并进行验证:
bash scripts/seg/cityscapes/run_fs_annn_cityscapes_seg.sh val ohem
3. 应用案例和最佳实践
应用案例
- 自动驾驶:在自动驾驶系统中,语义分割用于识别道路、行人、车辆等,ANN的高效性能可以显著提升系统的实时性和准确性。
- 医学影像分析:在医学影像中,ANN可以用于肿瘤检测、器官分割等任务,提高诊断的准确性和效率。
最佳实践
- 数据预处理:确保数据集的预处理步骤正确执行,以获得最佳的训练效果。
- 超参数调优:根据具体任务调整学习率、批量大小等超参数,以优化模型性能。
4. 典型生态项目
相关项目
- PyTorch:ANN项目基于PyTorch框架开发,PyTorch提供了丰富的工具和库,支持深度学习模型的快速开发和部署。
- Cityscapes Dataset:Cityscapes是一个广泛使用的语义分割数据集,适用于自动驾驶和机器人导航等应用。
生态项目
- TorchCV:一个基于PyTorch的计算机视觉框架,提供了多种计算机视觉算法的实现,适合与ANN项目结合使用。
通过以上步骤,你可以快速上手ANN项目,并在实际应用中发挥其高效性能。
ANN semantic segmentation,pytorch,non-local 项目地址: https://gitcode.com/gh_mirrors/an/ANN