开源项目 ann-writer 使用教程
1. 项目的目录结构及介绍
ann-writer/
├── data/
│ ├── processed/
│ └── raw/
├── models/
├── notebooks/
├── src/
│ ├── data/
│ ├── features/
│ ├── models/
│ └── visualization/
├── .gitignore
├── LICENSE
├── README.md
├── requirements.txt
├── setup.py
└── main.py
- data/: 存放数据文件,包括原始数据和处理后的数据。
- processed/: 处理后的数据文件。
- raw/: 原始数据文件。
- models/: 存放训练好的模型文件。
- notebooks/: 存放Jupyter笔记本文件,用于数据分析和模型实验。
- src/: 源代码目录。
- data/: 数据处理相关代码。
- features/: 特征工程相关代码。
- models/: 模型训练和评估相关代码。
- visualization/: 数据可视化相关代码。
- .gitignore: Git忽略文件配置。
- LICENSE: 项目许可证。
- README.md: 项目说明文档。
- requirements.txt: 项目依赖包列表。
- setup.py: 项目安装脚本。
- main.py: 项目启动文件。
2. 项目的启动文件介绍
main.py
是项目的启动文件,负责初始化项目并启动主要功能。以下是 main.py
的主要内容:
import argparse
from src.data.make_dataset import make_dataset
from src.models.train_model import train_model
from src.models.predict_model import predict_model
def main(args):
if args.mode == 'train':
make_dataset()
train_model()
elif args.mode == 'predict':
predict_model()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='ANN Writer')
parser.add_argument('--mode', type=str, default='train', help='train or predict')
args = parser.parse_args()
main(args)
- argparse: 用于解析命令行参数。
- make_dataset: 数据处理函数,从
src.data.make_dataset
导入。 - train_model: 模型训练函数,从
src.models.train_model
导入。 - predict_model: 模型预测函数,从
src.models.predict_model
导入。 - main: 主函数,根据命令行参数选择执行训练或预测。
3. 项目的配置文件介绍
项目中没有显式的配置文件,但可以通过命令行参数和环境变量进行配置。例如,在 main.py
中,可以通过 --mode
参数指定运行模式(训练或预测)。
此外,项目依赖包列表在 requirements.txt
中定义,可以通过以下命令安装:
pip install -r requirements.txt
项目的其他配置可以通过修改 src
目录下的相关代码文件进行调整。