BorutaPy 教程:Python 特征选择库的安装与使用

BorutaPy 教程:Python 特征选择库的安装与使用

boruta_pyPython implementations of the Boruta all-relevant feature selection method.项目地址:https://gitcode.com/gh_mirrors/bo/boruta_py

1. 项目目录结构及介绍

boruta_py项目的目录结构如下:

  • github/workflows: 包含GitHub工作流定义文件。
  • boruta.py: 主要的实现代码,包含了Boruta特征选择方法的核心功能。
  • LICENSE: 开源许可文件,本项目遵循BSD-3-Clause许可证。
  • MANIFEST.in: Python打包时的文件包含清单。
  • README.md: 项目说明文件,提供了项目简介和安装指南。
  • setup.py: 安装脚本,用于通过pip或conda安装项目。

这些文件一起构成了一个基本的Python包结构,允许用户通过标准的方式来安装和使用BorutaPy。

2. 项目的启动文件介绍

该项目的核心文件是boruta.py,它定义了BorutaPy类,这是实现Boruta特征选择算法的对象。当你导入并实例化这个类时,就可以调用其fittransform方法来执行特征选择。例如:

from boruta import BorutaPy
selector = BorutaPy()
selector.fit(X, y)
selected_features = selector.transform(X)

在这里,X是输入数据集,y是目标变量。fit方法学习数据,而transform方法则对新数据进行特征选择。

3. 项目的配置文件介绍

boruta_py项目中并没有明显的配置文件,因为作为一个轻量级的Python库,它的设置通常是通过构造函数或者类的方法参数传递的。例如,你可以自定义随机森林的数量、迭代次数等:

selector = BorutaPy(n_estimators=100, max_iter=50)

在这个例子中,n_estimators设置了随机森林中决策树的数量,max_iter设定了最大迭代次数以确定特征的重要性。

为了更好地控制项目的行为,可以创建自己的配置文件(如.config.yml),然后在你的程序中读取并应用这些配置。但这种做法不是boruta_py的标准部分,需要用户自己实现。

示例配置文件(非项目自带)

n_estimators: 100
max_iter: 50
shadow_strength: 0.5
verbosity: 2

然后在代码中加载和使用:

import yaml
with open('.config.yml', 'r') as f:
    config = yaml.safe_load(f)

selector = BorutaPy(**config)

请注意,以上**config语法将字典config转换为关键字参数,以便传递给BorutaPy的初始化方法。

总结来说,boruta_py项目主要依赖于代码中的参数和输入数据,而不是外部的配置文件,这使得它更易于集成到其他Python项目中。

boruta_pyPython implementations of the Boruta all-relevant feature selection method.项目地址:https://gitcode.com/gh_mirrors/bo/boruta_py

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凤红令Nathania

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值