BorutaPy 教程:Python 特征选择库的安装与使用
1. 项目目录结构及介绍
boruta_py
项目的目录结构如下:
github/workflows
: 包含GitHub工作流定义文件。boruta.py
: 主要的实现代码,包含了Boruta特征选择方法的核心功能。LICENSE
: 开源许可文件,本项目遵循BSD-3-Clause许可证。MANIFEST.in
: Python打包时的文件包含清单。README.md
: 项目说明文件,提供了项目简介和安装指南。setup.py
: 安装脚本,用于通过pip或conda安装项目。
这些文件一起构成了一个基本的Python包结构,允许用户通过标准的方式来安装和使用BorutaPy。
2. 项目的启动文件介绍
该项目的核心文件是boruta.py
,它定义了BorutaPy
类,这是实现Boruta特征选择算法的对象。当你导入并实例化这个类时,就可以调用其fit
和transform
方法来执行特征选择。例如:
from boruta import BorutaPy
selector = BorutaPy()
selector.fit(X, y)
selected_features = selector.transform(X)
在这里,X
是输入数据集,y
是目标变量。fit
方法学习数据,而transform
方法则对新数据进行特征选择。
3. 项目的配置文件介绍
在boruta_py
项目中并没有明显的配置文件,因为作为一个轻量级的Python库,它的设置通常是通过构造函数或者类的方法参数传递的。例如,你可以自定义随机森林的数量、迭代次数等:
selector = BorutaPy(n_estimators=100, max_iter=50)
在这个例子中,n_estimators
设置了随机森林中决策树的数量,max_iter
设定了最大迭代次数以确定特征的重要性。
为了更好地控制项目的行为,可以创建自己的配置文件(如.config.yml
),然后在你的程序中读取并应用这些配置。但这种做法不是boruta_py
的标准部分,需要用户自己实现。
示例配置文件(非项目自带)
n_estimators: 100
max_iter: 50
shadow_strength: 0.5
verbosity: 2
然后在代码中加载和使用:
import yaml
with open('.config.yml', 'r') as f:
config = yaml.safe_load(f)
selector = BorutaPy(**config)
请注意,以上**config
语法将字典config
转换为关键字参数,以便传递给BorutaPy
的初始化方法。
总结来说,boruta_py
项目主要依赖于代码中的参数和输入数据,而不是外部的配置文件,这使得它更易于集成到其他Python项目中。