CodeGeeX2模型本地推理全攻略:从基础到高级优化

CodeGeeX2模型本地推理全攻略:从基础到高级优化

CodeGeeX2 CodeGeeX2: A More Powerful Multilingual Code Generation Model CodeGeeX2 项目地址: https://gitcode.com/gh_mirrors/co/CodeGeeX2

CodeGeeX2作为第二代多语言代码生成模型,相比第一代在性能、速度和模型体积上都有显著提升。本文将全面介绍CodeGeeX2-6B模型的各种推理方式,帮助开发者根据自身硬件条件选择最适合的部署方案。

一、基础推理环境搭建

1.1 环境准备

首先需要安装必要的Python依赖包,建议使用Python 3.8或更高版本:

pip install torch transformers sentencepiece

1.2 模型加载

CodeGeeX2支持通过Hugging Face Transformers库直接加载:

from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True, device='cuda')
model = model.eval()

1.3 基础使用示例

CodeGeeX2支持100多种编程语言,可以通过语言标签引导生成特定语言的代码:

prompt = "# language: Python\n# write a bubble sort function\n"
inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_length=256, top_k=1)
response = tokenizer.decode(outputs[0])
print(response)

二、量化推理优化

2.1 精度选择指南

CodeGeeX2支持多种精度格式,不同格式对显存的需求如下:

| 模型版本 | FP16/BF16 | INT8 | INT4 | |----------------|-----------|--------|--------| | CodeGeeX2-6B | 13.1 GB | 8.2 GB | 5.5 GB |

2.2 不同精度加载方式

BF16/FP16加载(默认使用BF16):

model = AutoModel.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True)

INT8量化

model = AutoModel.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True).quantize(8)

INT4量化

model = AutoModel.from_pretrained("THUDM/codegeex2-6b", trust_remote_code=True).quantize(4)

三、多GPU推理方案

对于拥有多块GPU的用户,可以通过以下方式实现模型并行:

from gpus import load_model_on_gpus
model = load_model_on_gpus("THUDM/codegeex2-6b", num_gpus=2)

四、Mac平台专属方案

4.1 环境配置

Mac用户需要安装PyTorch的Nightly版本:

pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu

4.2 MPS后端使用

model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().to('mps')

五、高性能推理加速方案

5.1 FastLLM加速

FastLLM是目前支持GLM架构的最快开源框架,安装步骤如下:

git clone https://github.com/ztxz16/fastllm
cd fastllm
mkdir build && cd build
cmake .. -DUSE_CUDA=ON  # 使用GPU加速
make -j
cd tools && python setup.py install

转换和使用示例:

from fastllm_pytools import llm
model = llm.from_hf(model, tokenizer, dtype="float16")  # 支持"float16", "int8", "int4"

5.2 ChatGLM.cpp加速

ChatGLM.cpp提供全平台量化加速方案,支持多种量化精度:

CMAKE_ARGS="-DGGML_CUBLAS=ON" pip install chatglm-cpp -v

使用示例:

import chatglm_cpp
pipeline = chatglm_cpp.Pipeline("THUDM/codegeex2-6b", dtype="q4_0")
print(pipeline.generate("# language: Python\n# write a bubble sort function\n"))

六、实用技巧与注意事项

  1. 显存不足处理:当显存不足时,优先考虑使用INT4量化,可大幅降低显存需求

  2. 生成质量优化:适当调整temperature参数可以平衡生成结果的创造性和准确性

  3. 批处理技巧:对于批量生成任务,可以考虑使用批处理提高效率

  4. 错误排查:如果遇到推理结果乱码,检查是否使用了正确的精度格式

通过本文介绍的各种方法,开发者可以根据自身硬件条件和性能需求,选择最适合的CodeGeeX2推理方案,在本地高效运行这一强大的代码生成模型。

CodeGeeX2 CodeGeeX2: A More Powerful Multilingual Code Generation Model CodeGeeX2 项目地址: https://gitcode.com/gh_mirrors/co/CodeGeeX2

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/502b0f9d0e26 在当下互联网蓬勃发展的时代,流媒体技术已然成为多媒体内容传播与分享的关键手段,而 m3u8 格式凭借其基于 HTTP Live Streaming (HLS) 的特性,在在线视频、直播等诸多领域被广泛应用。不过,普通用户若想把 m3u8 链接下载下来,再转换成像 MP4 这样的本地离线观看文件,往往离不开一款专业的工具——m3u8 下载器。本文将深入剖析 m3u8 下载器的功能特点,以及其如何助力用户实现多任务下载、突破速度限制、将 ts 文件合并为 MP4 格式,还有处理加密视频等诸多功能。 m3u8 下载器核心功能是能从 m3u8 播放列表里解析出 TS 分片文件,并进行批量下载。TS 即传输流,是流媒体传输中常见的数据包形式。该下载器支持多任务下载,用户可同时操作多个 m3u8 链接,对于有大量视频下载需求的用户而言,这大大提升了下载效率。而且,m3u8 下载器在合法合规的前提下,通过优化下载策略,突破了常规网络环境下部分网站对下载速度的限制,让用户能更快速地获取所需多媒体资源。 此外,m3u8 下载器还能把 TS 文件合并成 MP4 文件。TS 文件是流媒体数据的片段,MP4 则是一种通用且便于存储、播放的格式。下载器会自动按顺序将所有 TS 文件合并,生成完整的 MP4 文件,极大简化了用户操作。更关键的是,它支持处理采用 AES-128-CBC 加密的 TS 文件。AES 是广泛使用的加密标准,CBC 是其工作模式之一,对于这类加密的 m3u8 视频,下载器能自动识别并解密,保障用户正常下载、播放加密内容。 m3u8 下载器还对错误进行了修正,优化了性能,有效解决了下载中断等问题,确保下载过程稳定。同时,软件在设计时将安全性作为重点,注重保护用户隐私,规避下载过程中的安全风
资源下载链接为: https://pan.quark.cn/s/27aaeeaf622d R语言是一种开源编程语言,广泛应用于统计分析、数据挖掘、机器学习和图形绘制等领域,凭借其强大的数据处理能力和丰富的统计分析库而受到广泛欢迎。R-4.2.2-win.zip是专为Windows系统设计的R语言安装包,包含了在Windows环境下运行R所需的所有组件。以下是R语言的安装过程: 下载:从R官方网站或镜像站点下载Windows版本的安装包,例如R-4.2.2-win.zip。该zip文件中通常包含一个可执行的安装程序,如R-4.2.2-win.exe。 解压:使用解压缩工具(如WinRAR或7-Zip)解压R-4.2.2-win.zip文件,以释放出R的安装程序R-4.2.2-win.exe。 运行安装程序:双击R-4.2.2-win.exe启动安装过程。安装向导会引导用户完成安装步骤,包括选择安装路径、设置环境变量以及选择安装类型(默认、最小化或自定义)。 配置环境:在安装过程中,用户可以选择是否将R添加到系统路径,以便在命令行中直接运行R。此外,还可以选择安装集成开发环境(IDE),如RStudio,以提升编程体验。 安装依赖库:R语言的强大之处在于其丰富的第三方包。在初次启动R时,用户可能需要通过install.packages()函数安装一些常用包,例如用于数据可视化的ggplot2、用于数据操作的dplyr和用于数据整理的tidyr等。 验证安装:安装完成后,启动R Console或RStudio,并输入sessionInfo()命令,以查看当前R版本和其他相关信息,从而确认安装成功。 更新与维护:R语言会定期更新,以修复问题并引入新功能。用户可以通过R Console中的update.packages()命令更新R及其包,确保始终使用最新版本。 学习资源:初学者可以
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水照均Farrah

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值