Deep Feature Flow 项目使用教程

Deep Feature Flow 项目使用教程

Deep-Feature-FlowDeep Feature Flow for Video Recognition项目地址:https://gitcode.com/gh_mirrors/de/Deep-Feature-Flow

目录结构及介绍

Deep Feature Flow 项目的目录结构如下:

Deep-Feature-Flow/
├── data/
│   └── ILSVRC2015/
│       └── ImageSets/
├── demo/
│   └── ILSVRC2015_val_00007010/
├── dff_rfcn/
├── experiments/
├── lib/
├── rfcn/
├── .gitignore
├── LICENSE
├── README.md
├── ThirdPartyNotices.txt
├── init.bat
└── init.sh

各目录和文件的介绍如下:

  • data/: 存放数据集的目录,例如 ILSVRC2015 数据集的 ImageSets。
  • demo/: 存放演示文件的目录,例如 ILSVRC2015_val_00007010 演示文件。
  • dff_rfcn/: Deep Feature Flow 的主要实现代码。
  • experiments/: 存放实验配置和结果的目录。
  • lib/: 项目依赖的库文件。
  • rfcn/: R-FCN 相关代码。
  • .gitignore: Git 忽略文件配置。
  • LICENSE: 项目许可证文件。
  • README.md: 项目说明文档。
  • ThirdPartyNotices.txt: 第三方通知文件。
  • init.bat: Windows 平台下的初始化脚本。
  • init.sh: Linux 平台下的初始化脚本。

项目的启动文件介绍

项目的启动文件主要是 init.batinit.sh,这两个文件分别用于 Windows 和 Linux 平台的初始化操作。

  • init.bat: Windows 平台下的批处理文件,用于初始化项目环境。
  • init.sh: Linux 平台下的 shell 脚本,用于初始化项目环境。

项目的配置文件介绍

项目的配置文件主要位于 experiments/ 目录下,该目录包含了实验的配置文件,例如训练和测试的参数配置。

  • experiments/: 存放实验配置文件的目录,每个实验可能有一个或多个配置文件,用于指定模型、数据集、训练参数等。

具体的配置文件格式和内容会根据实验的具体需求而有所不同,通常包括模型路径、数据集路径、学习率、批大小等参数。

Deep-Feature-FlowDeep Feature Flow for Video Recognition项目地址:https://gitcode.com/gh_mirrors/de/Deep-Feature-Flow

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薄琼茵Angelic

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值