自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

yychentracy的博客

哈哈,我的博客主要就是我平时的一些学习笔记,希望可以与大家一起交流,督促我学习,叫我变得勤奋...

原创 c++基本语言知识

指针与引用的区别 指针有一块自己空间,引用只是一个别名 使用sizeof看成一个指针的大小是4,引用则是被引用对象的大小 指针可以初始化为NULL,引用必须初始化,并且应该是一个已有对象的引用 参数传递的时候,指针需要解引用才可以对对象进行操作,而直接对引用的修改就可以改变引用所指向的对象 可以...

2019-09-26 20:58:59

阅读数 5

评论数 0

原创 c ++关于指针的一些理解

指针与引用的区别 非空,任何情况下都不能使用指向空值的引用,一个引用必须指向某个对象,不存在指向空值的引用。 -合法性,在使用引用之前,不需要测试他的合法性。指针总是被测试,以防止为空。 下面使用指针和引用实现两个数的交换 void swap(int *p,int *q) { int t...

2019-09-14 12:50:22

阅读数 17

评论数 0

原创 集成学习2

bagging 从原始的训练集中抽取训练集,每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本又放回的抽取,进行k轮抽取,得到k个训练集。 每次使用一个训练集得到一个模型,k个训练集就得到k个模型 对分类问题将上一步得到的k个模型采用投票的方式得到分类结果,对回归问题,计算上面...

2019-09-13 15:33:00

阅读数 14

评论数 0

原创 集成学习

集成学习 集成学习就是构建多个学习器来完成学习任务,也称为多分类系统,也就是对多个学习器进行组合,获得比单一学习器显著优越的泛化性能。 集成学习分类 各自之间存在强依赖关系,必须要串行生成的序列化方法 boosting 算法 让真个数据集放在一个弱学习器中进行学习,每个样本和弱分类器都有...

2019-09-13 14:40:29

阅读数 13

评论数 0

原创 机器学习方法总结

常见的机器学习算法 1.学习方式 常见的算法 介绍 常见的学习方法 应用场景 监督学习 输入数据成为训练数据,每组训练数据都有一个明确的标识或结果,监督学习就是建立一个学习过程将预测结果与训练数据的实际结果进行比较,不断地调整预测模型,知道预测模型达到一个预期的准确率 逻辑回归和反...

2019-09-13 08:59:28

阅读数 43

评论数 0

原创 字符创最后一个字符的长度

代码解释 #include<iostream> #include<string>//包含这个头文件 using namespace std; int main() { string s; getline(cin,s);//输入...

2019-09-12 16:17:28

阅读数 10

评论数 0

原创 重新梳理神经网络

卷积神经网络的结构介绍 卷积核是一组随机初始化的数的序列 每个神经元只需要在局部进行感知,然后在高层将局部信息综合起来就得到全局信息。所以局部感受野就能很好的降低参数。 卷积的目的是为了提取特征,根据局部感受野一小块一小块的比对,在两幅图中大致相同的位置找到一些粗糙的特征进行匹配,相比那些整副图逐...

2019-09-05 15:41:10

阅读数 20

评论数 0

原创 运行pytorch出现的问题

1pytorch的版本问题 THCudaCheck FAIL file=/pytorch/aten/src/THC/THCGeneral.cpp line=383 error=11 : invalid argument Traceback (most recent call last): File...

2019-09-03 17:04:14

阅读数 32

评论数 0

原创 pytorch训练一个网络需要做的事情

steps 1 使用 Torchvision加载和归一化cifar10训练集和测试集 2 定义一个卷积网络 3 定义损失函数 4 在训练集上训练图片 5 在测试集上测试图片 transform = transforms.Compose( [transforms.ToTensor(), ...

2019-09-01 16:58:23

阅读数 28

评论数 0

原创 目标检测算法的一些讲解

R-CNN的过程 输入测试图像, 用selective search的方法在图像上提取2000个region Proposal 将每个region proposals缩放到227*227的大小并输入到cnn,将CNN的fc7的输出作为特征 将每个region proposal提取的cnn特征 作为...

2019-08-31 21:57:54

阅读数 32

评论数 0

原创 ROIpooling是什么

ROI操作的基本介绍 roi是在原图中的感兴趣区域,可以理解为目标检测的候选框也就是region of proposals,我们将原图进行特征提取的时候,就会提取到相应的feature map。那么相应的ROI就会在feature map上有映射,这个映射过程就是roipooling的一部分,一般...

2019-08-31 15:07:43

阅读数 11

评论数 0

原创 胶囊网络

摘要 这篇文章就是提出了一个新的结构 胶囊时一组神经元的集合,这些集合用一个 向量表示,其中active的vector代表着某个实体的各个实例参数。通常我们会用此向量的长度来代表某个实体存在的概率,方向表示这个 实体的一些属性。在网络中,低层的胶囊为高层的胶囊做预测,当低层的都完成预测的时候,高层...

2019-08-30 21:57:45

阅读数 82

评论数 0

原创 SVM

对偶问题基于SVM求解

2019-08-30 15:11:20

阅读数 7

评论数 0

转载 c++的多态

c++的多态 分为静态多态和动态多态,函数重载和运算符重载属于静态多态,虚函数实现的是动态多态 虚函数允许子类重新定义成员函数,而子类中重新定义父类的方法称为覆盖,或者重写(override) 多态的实现 最常见的方法就是声明基类的指针,让该指针指向任意一个子类对象,由于编写代码的时候,不能确定被...

2019-08-28 09:41:28

阅读数 9

评论数 0

原创 机器学习&深度学习的一些知识点

优化函数 SGD是随机梯度下降,每一次迭代计算数据集的mini-batch的梯度,然后对参数进行更新 momentum参考了物理中动量的概念,前几次梯度也会参与到当前的计算中去,但是前几轮的梯度叠加会在当前一轮有一定的衰减 adagard在训练的过程中可以自动的变更学习的速率,设置一个全局的学习率...

2019-08-27 14:16:53

阅读数 17

评论数 0

转载 转载]对深度可分离卷积、分组卷积、扩张卷积、转置卷积(反卷积)的理解

深度可分离卷积(depthwise separable convolution) 在可分离卷积(separable convolution)中,通常将卷积操作拆分成多个步骤。而在神经网络中通常使用的就是深度可分离卷积(depthwise separable convolution)。 举个例子,假...

2019-08-21 14:08:35

阅读数 15

评论数 0

转载 目标检测-Matrix Nets

仅适用此模型一半的参数量就可以实现47.8%的MAP,高于任何其他的单步检测,另外,xnets的训练速度是目前第二号的框架的3倍 使用的主要方法就是将目标的尺度和宽高比映射到不同的层中,使得每层目标的大小和宽高几乎满足统一的条件,是一种考虑目标尺度和宽高比的框架。 目标检测 方法 ...

2019-08-16 16:07:05

阅读数 230

评论数 0

原创 人体骨骼关键点检测

challenge 关键点可见性受穿着,姿态,视角影响很大,而且面临着遮挡,光照,雾等环境的影响,2d人体检测和3d人体关键点视觉上会有明显的差异,身体的不同部位有视觉缩短的效果,使得人体骨骼关键点。 关键点检测算法 关键点检测算法主要分为自上而下和自下而上两种。 自上而下 就是目标检测+单人骨...

2019-08-15 11:02:37

阅读数 71

评论数 0

原创 深度学习模型发展史

多层感知机 LeNet5 1.相比MLP,LeNet使用了相对更少的参数,获得了更好的结果。 2.设计了maxpool来提取特征 AlexNet 特点: 1.相比LeNet,AlexNet设计了更深层的网络。 2.在每个卷机后面添加了Relu激活函数,解决了Sigmoid的梯度消...

2019-08-10 16:53:35

阅读数 60

评论数 0

转载 神经网络中的数据增强

数据增强与过拟合 验证是否过拟合的方法:如果训练集的loss持续减小,验证集的loss增大,那么就是过拟合了 数据增强的目的 数据增强实现数据更为复杂的表征,减小训练集与验证集以及最终测试集的差距,网络更好的学习迁移数据集上的数据分布。 数据增强的方法 1 数据变换增强 包括几何变化换,色彩空间变...

2019-08-05 11:26:02

阅读数 28

评论数 0

提示
确定要删除当前文章?
取消 删除